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Abstract

In this paper, a New-Keynesian DSGE model for a small open economy integrated in a

monetary union is developed and estimated for the Portuguese economy, using a Bayesian

approach. Estimates for some key structural parameters are obtained and a set of exercises

exploring the model’s statistical and economic properties are performed. A survey on the

main events and literature associated with DSGE models that motivated this study is also

provided, as well as a comprehensive discussion of the Bayesian estimation and model vali-

dation techniques applied. The model features five types of agents namely households, firms,

aggregators, the rest of the world and the government, and includes a number of shocks

and frictions, which enable a closer matching of the short-run properties of the data and a

more realistic short-term adjustment to shocks. It is assumed from the outset that mone-

tary policy is defined by the union’s central bank and that the domestic economy’s size is

negligible, relative to the union’s one, and therefore its specific economic fluctuations have

no influence on the union’s macroeconomic aggregates and monetary policy. An endogenous

risk-premium is considered, allowing for deviations of the domestic economy’s interest rate

from the union’s one. Furthermore it is assumed that all trade and financial flows are per-

formed with countries belonging to the union, which implies that the nominal exchange rate

is irrevocably set to unity.
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1 Introduction

The modelling of macroeconomic fluctuations has changed dramatically over the last thirty

years. When traditional large-scale macroeconometric models used in the 1960s and 1970s came

under severe critiques, the need for a new paradigm emerged. In their seminal paper, Kydland

and Prescott (1982) provided an answer by proposing a new type of model, where private agents

had an optimising behaviour, benefiting from rational expectations and acting in a Dynamic

Stochastic General Equilibrium (DSGE) framework. The article was in the genesis of a new way

of studying macroeconomic fluctuations, the so-called Real Business Cycle (RBC) approach to

macroeconomic modelling, which became one of the main toolboxes of macroeconomic research.

Although RBC models provided a fundamental methodological contribution, they soon

proved to be insufficient, especially for policy analysis in central banks and other policy in-

stitutions, giving rise to a new debate in the field of macroeconomics. A new school of thought

emerged from the debate, in the 1990s, the so-called New-Keynesian Macroeconomics. Although

sharing the basic RBC structure, this new approach viewed the sources and mechanisms of busi-

ness cycles in a very distinct way, introducing a wide set of new assumptions into DSGE models,

which proved to be extremely successful among both the academia and applied economists.

In parallel with theoretical developments, major advances were also accomplished with re-

spect to the econometric apparatus associated with DSGE models. Bayesian techniques emerged

as the most promising tools to estimate and quantitatively evaluate these models, bearing im-

portant advantages when compared to the other available methods both from an economic and

statistical point of view, especially for medium to large-scale models. Many studies documented

the empirical possibilities and usefulness of these models, even when compared with more tradi-

tional econometric tools, making DSGE models attractive not only because of their theoretical

consistency but also because of their data explanatory power.

The combination of a strong theoretical framework with a good empirical fit has turned

New-Keynesian DSGE models into one of the most attractive tools for modern macroeconomic

modelling and has led to their widespread use not only in the academia but also in a number

of policy-making institutions. They are considered to be a privileged vehicle for economists

to structure their thinking and understand the functioning of the economy, being used for

a number of purposes, from policy analysis to welfare measurement, identification of shocks,

scenario analysis and forecasting exercises.

New-Keynesian DSGE modelling and estimation is therefore one of the most interesting and
3



promising fields in modern macroeconometric research, from which no country should be left

out. In the case of Portugal, although some exercises have already been performed using DSGE

models, no attempt has been made to estimate a New-Keynesian DSGE model, to the best of

my knowledge. In this article, I hope to contribute to fill this gap by developing and performing

Bayesian estimation of a model of this type for Portugal. Estimates for some key structural

parameters of the Portuguese economy are obtained and a set of exercises that explore the

model’s empirical properties and the results’ robustness are performed. A survey on the main

events and literature associated with DSGE models is also provided, as well as a comprehensive

discussion on the estimation and model comparison techniques used in the study.

The model is greatly inspired in the works of Adolfson, Laséen, Lindé and Villani (2007)

and Almeida, Castro and Félix (2008). The first one corresponds to a model estimated for

Sweden (which like Portugal is a small-open economy) using Bayesian techniques. The second

one constitutes the most recent and comprehensive DSGE model developed for the Portuguese

economy and therefore, although it is calibrated, constitutes an important reference for this

study. It is a New-Keynesian DSGE model for a small open economy, integrated in a monetary

union, featuring five types of agents namely households, firms, aggregators, the rest of the

world and the government. It includes a number of shocks and frictions, which have proven

to enable a closer matching of the short-run properties of the data and a more realistic short-

term adjustment to shocks. Monetary policy is totally defined by the union’s central bank and

the domestic economy’s size is negligible, relative to the union’s one, and therefore its specific

economic fluctuations have no influence on the union’s macroeconomic aggregates and monetary

policy. A risk-premium is considered to allow for deviations of the domestic economy’s interest

rate from the union’s one. Furthermore, for simplification, it is assumed that all trade and

financial flows are performed with countries belonging to the union, which implies that the

nominal exchange rate is irrevocably set to unity.

The remainder of the paper is organised as follows: in section 2 I motivate the study and

provide some important references; in section 3 I explain the main methodological aspects related

to the study; in section 4 I present the model; in section 5, I present the estimation results and

evaluation, as well as some data and methodological considerations; and finally, in section 6, I

wrap up the main conclusions and discuss some possible extensions of this work.
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2 Motivation and background

In this section, a reference to the main events and literature related to the development and

estimation of New-Keynesian DSGE models is made, to provide an understanding of what

inspired this study and the main options concerning both the model features and the methods

used when taking it to the data.

The failure of traditional macroeconometric models

During the 1960s and 1970s, large-scale macroeconometric models were the main tool available

for applied macroeconomic analysis. These models were composed by a number of equations

linking variables of interest to explanatory factors and while the choice of which variables to in-

clude in each equation was guided by economic theory, their coefficients were mostly determined

on purely empirical grounds, based on historical data.

In the late 1970s, these models came under sharp criticism. On the empirical side, they

were confronted with the appearance of stagflation, which was incompatible with the traditional

Phillips curve included in these models. Furthermore, Sims (1980) questioned the usual practice

of making some variables exogenous, which excluded meaningful feedback mechanisms between

the models’ variables. But the main critique was on the theoretical side and came from Lucas

(1976), corresponding to the so-called “Lucas critique”. Lucas pointed out that the empirical

puzzle of stagflation was just a reflection of a more general theoretical problem. He noted that

agents behave in an optimising dynamic way and form rational expectations, adapting both

their current and future behaviours to anticipated changes in the economic environment. Being

exclusively based on the past, traditional models simply assumed that economic relationships

that were valid in a previous context would be able to explain developments in the economy

even if the context changed, without considering that the anticipation of those changes by agents

could alter the way they reacted, invalidating the previously estimated relationships.

Rise and fall of RBC models

As a response, economists of the 1980s departed to a new paradigm, whose genesis can be found

in the seminal work by Kydland and Prescott (1982). In this article, the economy was modelled in

a structural micro founded way, with economic agents making decisions and forming expectations

in a DSGE framework. The model economy was perfectly competitive and frictionless, with

prices and quantities immediately adjusting to their optimal levels after a shock. Fluctuations
5



were generated by the agents’ reactions to a random technology shock, with business cycles

simply resulting of an efficient response of rational optimising agents to the shock.

The model was largely adopted by macroeconomists, who introduced several sophistications

over the years, exploring its theoretical and empirical possibilities. This became known as the

RBC approach to macroeconomic modelling, constituting a crucial advance in modern macroe-

conomics, by firmly establishing DSGE models as the new paradigm of macroeconomic theory.

Despite their important methodological contribution, RBC models soon came under crit-

icism. The main issue was that, with completely flexible prices, any change in the nominal

interest rate was always matched by one-for-one changes in inflation, leaving the real interest

rate unchanged. This meant that monetary policy had no impact on real variables, a result that

was at odds with the widely held belief that it could influence the real side of the economy in the

short run. Furthermore, since cyclical fluctuations resulted from an optimal response to shocks,

stabilisation policies were not necessary and could even be counterproductive, as they would di-

vert the economy from its optimal response. This was in sharp contrast with the Keynesian view

that the troughs of the economic cycle were mainly due to an inefficient utilisation of resources,

which could be brought to an end by means of economic policies. In addition, the primary

role attributed to technology shocks was at odds with the traditional view of these shocks as a

source of long-term growth, unrelated to business cycles, which were mostly considered to be

demand-driven. Finally, the ability of RBC models to match the empirical evidence began to

be disputed, as they were not able to reproduce some important stylised facts. These issues

determined that although RBC models had a strong influence in the academia, they had a very

limited impact on central banks and other policy-making institutions, which continued to rely

on large-scale macroeconometric models despite their acknowledged shortcomings.

NKM as the new road ahead

The insufficiencies of RBC models began to be overcome in the 1990s with the birth of a new

school of thought, the so-called New-Keynesian Macroeconomics (NKM). This school shared the

RBC belief that macroeconomics needed rigorous microfoundations, also using DSGE models

as their workhorse, but rationalised the business cycle in a substantially different way. They

considered that the economy was not perfectly flexible nor perfectly competitive and that instead

it was subject to imperfections and rigidities, with these being key elements to understand the

dynamics of the real world. Based on this view, NKM economists introduced monopolistic
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competition and various types of nominal and real rigidities, as well as a broader set of random

disturbances. Some notable examples are: the introduction of sticky prices, following previous

studies like Calvo (1983), which allowed for price inertia, breaking the strong RBC assumption

of money neutrality; demand shocks as in Rotemberg and Woodford (1995); the extension of

nominal stickiness to wages, following Erceg, Henderson and Levin (2000), which have been

shown to play an important role in explaining inflation and output dynamics; the introduction

of consumption habits, following previous work by Abel (1990), which helped in capturing

consumption persistency; price and wage indexation and the inclusion of investment adjustment

costs, as in Christiano, Eichenbaum and Evans (2005), which have enhanced the models’ ability

to capture the inflation persistence present in the data and investment dynamics.

These assumptions generated a meaningful role for monetary and other economic stabilisation

policies and proved to be extremely successful in capturing some features of macroeconomic time

series that RBC models had previously missed, determining the spreading of DSGE models from

the academia to policy-making institutions.

Econometrics gathers with economic theory

In parallel with theoretical developments, major advances were accomplished concerning the

econometric apparatus associated with DSGE models. Numerous procedures emerged to param-

eterise and evaluate DSGE models, which can be split into limited or full information methods.

In the first approach, a DSGE model mimics the world only along a particular set of dimen-

sions. This idea is behind calibration, the method originally proposed by Kydland and Prescott

(1982), which simply attributes values to the parameters, based on information from previous

studies and common knowledge, such that the model is able to replicate some selected moments

of the data. Another method that fits in the limited-information approach is the Generalised

Method of Moments (GMM), used for e.g. in Christiano and Eichenbaum (1990), where parame-

ters are chosen in a way that selected equilibrium equations are verified, as precisely as possible.

In addition, there is the method proposed in Christiano et al. (2005), where parameters are

estimated by minimising the difference between estimated impulse response functions (IRFs) to

shocks in an identified VAR and those based on the DSGE model.

In contrast, the second approach takes the whole set of implications of the model into ac-

count, attempting to obtain estimates that provide a full characterisation of the observed data.

There are basically two methods that fit into this category, Classical and Bayesian Maximum
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Likelihood Estimation (MLE). They both rely on the specification of a probabilistic structure

for the model, which enables the construction of the likelihood function that expresses the prob-

ability of observing a given dataset as a function of the model’s parameters. The likelihood can

be computed for different combinations of parameters, to find the combination that produces

the maximum value for the function, i.e. that makes the data set (that we know to be true)

”more likely”. In Classical MLE, parameter estimates are directly obtained from this process.

This method has been applied by Kim (2000) and Ireland (2001), for e.g.. In Bayesian MLE,

an additional function is considered, the prior, representing the probability that the researcher

attributes to different possible values of the parameters before observing the data, based on

previous studies or on his personal beliefs. The prior is then combined with the likelihood and

the resulting function can then be maximised, with respect to the parameters until the com-

bination of parameters estimates that produces the highest value for the objective function is

found, i.e. the combination that makes both the data set and the imposed a-priori beliefs to

be ”more likely”. The application of these techniques to the estimation of a DSGE model was

firstly done by DeJong, Ingram and Whiteman (2000) and has since then been adopted by sev-

eral researchers as is the case of Smets and Wouters (2003), Rabanal and Rubio-Ramı́rez (2005),

Adolfson, Laséen, Lindé and Villani (2007), and Christoffel, Coenen and Warne (2008).

Bayesian techniques stand out

When comparing the two approaches, although both have advantages and disadvantages, the

superiority of the full-information one is clear. On the economic side, it is appealing since

estimates are obtained employing all the restrictions implied by the model, allowing for a more

consistent characterisation of the data generation process. On the statistical side, efficiency is

enhanced by the use of all available information.

Within full-information methods, Bayesian MLE is the one that has gathered more sup-

porters, with Classical MLE being feasible only for relatively small systems and not for the

large-scale models that have been used recently. The main issue has to do with identification

problems. In models with a large amount of parameters to estimate it is hard to obtain correct

information about all of them from the data, which implies that quite often two problems arise:

the likelihood is flat in large subsets of the parameters space, i.e. different values of the param-

eters lead to the same joint distribution for the observed data, making the maximisation of the

likelihood a very hard task; or the likelihood peaks in ”strange areas”, producing estimates that
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are at odds with additional information that the researcher may have, the so-called ”dilemma

of absurd parameter estimates”. In Bayesian inference, the likelihood function is ”reweighted”

by the prior which produces a function with more curvature that is able to minimise, both the

”flatness” and ”dilemma of absurd parameter estimates” problems1. Furthermore, in Classical

MLE, the outcome of the overall estimation process is highly sensitive to the estimated value of

each parameter meaning that if one or more parameters are poorly estimated, this may strongly

affect the results for all the other parameters. In Bayesian MLE this problem is minimised,

since the estimation of each parameter does not embody a particular value for the other param-

eters being estimated, but instead, it takes a whole distribution into account for each parameter,

which encompasses a wide range of possible estimates. In addition, the Bayesian approach allows

one to formally incorporate the use of a-priori information, coming either from previous studies

or simply reflecting the subjective opinions of the researcher, while Classical estimation cannot

incorporate even the most non-controversial prior information. Also, the Bayesian approach

provides a natural framework for model evaluation and comparison, through the computation

of posterior odds ratios2. These have Classical analogues in likelihood ratios, but go beyond

the comparison of two parameter vectors of greatest likelihood to involve information about

other possible values by comparing weighted-average values of likelihoods, with weights given

by the priors. Finally, another important advantage of Bayesian methods is that they produce

probability distributions for the model’s parameters, IRFs, forecasts, etc., and thereby directly

provide a measure of the uncertainty associated with model-based analysis and forecasting.

A large scope of application

The development of a deeper econometric framework surrounding DSGE models has considerably

enlarged their scope of application. They are now attractive not only because of their theoretical

consistency but also because the most recent vintages, estimated with Bayesian techniques, have

made big a progress on the empirical front. Indeed, they have proven to fit economic data quite

reasonably and to compare well and in many cases outperform more traditional tools such

as Vector Autoregressions (VAR), Vector Error Correction Models (VECM), Bayesian Vector

Autoregressions (BVAR), among others. These findings can be found in many reference studies

such as Smets and Wouters (2003), Fernandez-Villaverde and Rubio-Ramirez (2004), Del Negro,

Schorfheide, Smets and Wouters (2005), Adolfson, Laséen, Lindé and Villani (2005), Juillard,
1For more on identification problems in DSGE models see Canova (2007) and Iskrev (2009).
2This concept will be defined further on in Section 3.
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Kamenik, Kumhof and Laxton (2006) and Adolfson, Lindé and Villani (2007).

An important milestone in this evolution was the development of Dynare, a pre-processor and

a collection of publically available Matlab routines for the solution, simulation and estimation

of DSGE models3. It has enabled an easier access to quantitative DSGE modelling and is by

now the software adopted by a large fraction of macroeconomists working with DSGE models.

The combination of a strong theoretical framework with a good explanatory power of empir-

ical evidence has turned New-Keynesian DSGE models into the state of the art instrument for

macroeconomists, used for a number of purposes from policy analysis to welfare measurement,

identification of shocks, scenario analysis and forecasting. They are the object of attention not

only in the academia but also in a number of policy-making institutions, such as central banks,

which has brought the later closer to academic research and knowledge. Some prominent ex-

amples of organisms using these models are: the International Monetary Fund (IMF) whose

model, presented in Kumhof and Laxton (2007), has been used for e.g. to analyse fiscal policy

issues; the Bank of Sweden who has used its model, described in Adolfson, Laséen, Lindé and

Villani (2007), both for policy analysis and forecasting; the Bank of Finland with the AINO

model, that can be seen in Kilponen and Ripatti (2006), which besides being applied to the

study of specific issues, like ageing and demographics, is already the official forecasting model of

Finland’s central bank; and the European Central Bank (ECB) with the New Area Wide Model,

exposed in Christoffel et al. (2008), which is being used for a wide range of purposes.

For what has been exposed, New-Keynesian DSGE models and their estimation is certainly

one of the most interesting and promising fields in modern macroeconometric research, from

which no country should be left out. In the case of Portugal, very few exercises have been per-

formed using DSGE models, namely: Pereira and Rodrigues (2002) (DGE model) and Fagan,

Gaspar and Pereira (2004) where calibrated New-Keynesian models are used to analyse the im-

pact of a tax reform package and the macroeconomic effects of structural changes, respectively;

Silvano (2006) where an RBC model estimated with GMM is used to study business cycle move-

ments; and Almeida et al. (2008) and Adão (2009) where the effects of increasing competition in

the nontradable goods and labour markets and a monetary policy shock are examined, respec-

tively, using calibrated large-scale New-Keynesian models. However, no attempt has yet been

made to estimate a New-Keynesian DSGE model using Portuguese data, which has led to the

conduct of this study.
3For more on Dynare please go to http://www.cepremap.cnrs.fr/dynare/. A reference manual is Griffoli (2007).
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3 Methodology

A general overview of the main methodological aspects inherent to this work is now provided4.

A more detailed description of some issues is provided in the Appendix.

3.1 Model construction and solution

The construction of the model starts with the specification of the characteristics of the econ-

omy, its environment, agents, preferences, technologies and constraints, and the set of structural

shocks to which the economy is subject. The objectives of each agent are then presented, in-

volving dynamic optimisation problems for private agents and policy rules for the fiscal and

monetary authorities. Solving the problems of the optimising agents with the Lagrange multi-

pliers method a set of first order conditions is obtained, defining those agents’ decision rules.

The model equations are then subject to aggregation procedures, to obtain the behaviour of

economic agents as a whole. Furthermore, a set of market clearing conditions is specified, which

are necessary to ”close” the model.

As a result of this process, a set of equations is obtained expressing the endogenous variables

at each period as a function of its past, present and expected future path, a set of parameters

and a set of stochastic disturbances. These equations are the starting point of a set of operations

which in the end allow for the computation of a stable, unique, solution to the model.

Stationarising the model

The first step is rendering all variables stationary, with a well defined steady-state to which

they return after the economy has been hit by temporary shocks. For a model like the one in

this work, which comprises a unit-root technology shock and inflation in the steady-state, the

following transformations are needed: all non-stationary real variables have to be scaled by the

level of technology; all nominal variables have to be scaled by the numeraire of the economy;

the consumption lagrange multiplier has to be multiplied by the technology level.

Some issues should be referred at this point. First, variables are scaled with the technol-

ogy level and numeraire price level of the period in which they are decided and therefore, all

predetermined variables such as the capital stock are scaled with the lagged values of technol-

ogy and/or price. Second, being assumed to grow in line with productivity (which grows with
4These aspects mostly correspond to those applied by Dynare, since this was the adopted software.
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technology), the nominal wage rate needs to be scaled by both the price and technology levels.

Finally, foreign real variables are scaled by the foreign technology level, not the domestic one.

Writing the model in a general form

The set of stationary model equations are then put into the following matrix general form:

Et {f (yt+1, yt, yt−1, et+1, et)} = 1 (1)

where yt is the vector of (stationary) endogenous variables, 1 is a vector of 1’s and et is the

vector of innovations, assumed to be Gaussian white noise processes, satisfying:

et ∼ N(0, Σe) E(ete
′
s) = 0 t 6= s

We want to find the solution of the model, i.e. obtain the path for the model’s endoge-

nous variables. For this, we need to categorise them into predetermined (or state) and non-

predetermined (or forward-looking) variables. The former are variables that at t are already

determined, i.e. totally known at the end of t − 1, while the later are variables that are only

known at t. We want to express the forward-looking variables at t as a function of the available

information set composed by the predetermined variables and the innovations occurring in that

period. Formally, we wish to obtain a function g(.), called the policy function, such that:

yt = g (yt−1, et) (2)

Now note that using (2) we can rewrite (1) as:

Et {f (g (g (yt−1, et) , et+1) , g (yt−1, et) , yt−1, et+1, et)} = 1 (3)

Ideally, we would obtain the model solution directly from analytical manipulation of this

system of equations.However, these are highly non-linear, which makes the task of finding the

exact expression for g(.) a complex one. Instead, a tractable linear approximation is performed.

Computing the steady-state of the model

To perform the approximation, it is necessary to compute the steady-state of the model, which

corresponds to the situation in which there are no innovations and variables assume a constant
12



value in every period. Denoting the steady-state value of yt by ȳ, and using (1) and (2), the

steady-state of the model is represented by:

f (ȳ, ȳ, ȳ, 0, 0) = 1 (4)

ȳ = g (ȳ, 0) (5)

Approximating the model with a log-linearisation

Having computed the steady-state, each equation of (1) is approximated by the expected value

of a first order Taylor expansion of its logarithm around the steady-state. As a result, a ”new”

set of equations is obtained defining an approximate linear model whose endogenous variables

correspond to the percentage deviations of the original variables from their steady-state. Using

these equations, (1) and (2) can then be approximated by the following system:

Et {fy+1ŷt+1 + fyŷt + fy−1ŷt−1 + fe+1et+1 + feet} = 0 (6)

ŷt = gy−1ŷt−1 + geet (7)

where fy+1, fy and fy−1 are the matrix derivatives of f(.) with respect to yt+1, yt and yt−1,

respectively, evaluated at the steady-state; fe+1 and fe are the matrix derivatives of f(.) with

respect to et+1 and et, respectively, evaluated at the steady-state; gy−1 and ge are the matrix

derivatives of g(.) with respect to yt−1 and et, evaluated at the steady-state; ŷt+1, ŷt and ŷt−1

are vectors containing the percentage deviations of the original endogenous variables from their

steady-state at times t + 1, t and t− 1, respectively.

Equation (7) is the solution of the approximate linear model (6), dependent on gy−1 and ge,

which are a function of the parameters of the model but whose exact form is yet unknown.

Solving the approximate linear model

To find gy−1 and ge some techniques for solving Linear Rational Expectations (LRE) models are

applied, which I present here in only rough terms, since a detailed explanation is considered to

be beyond the scope of this study5. Start by noting that using (7) we can rewrite (6) as:

Et {fy+1 (gy−1gy−1ŷt−1 + gy−1geet + geet+1) + fy (gy−1ŷt−1 + geet) + fy−1ŷt−1 + fe+1et+1+

+feet} = 0 ⇔ (fy+1gy−1gy−1 + fygy−1 + fy−1) ŷt−1 + (fy+1gy−1ge + fyge + fe) et = 0 (8)

5To obtain a detailed exposition of this subject, please refer to Klein (2000) and Sims (2002).13



This equation has to hold for any ŷt−1 and any et and therefore each parentheses must be

null. Thus the matrices gy−1 and ge that we seek must satisfy:

fy+1gy−1gy−1 + fygy−1 + fy−1 = 0 (9)

fy+1gy−1ge + fyge + fe = 0 (10)

Now note that equation (8) can be rearranged in the following way:

fy+1gy−1 (gy−1ŷt−1 + geet) + (fygy−1 + fy−1) ŷt−1 + (fyge + fe) et = 0 ⇔

⇔ fy+1gy−1ŷt + (fygy−1 + fy−1) ŷt−1 + (fyge + fe) et = 0 (11)

We can then rewrite our approximate linear model, characterised by (7) and (11) as:

Axt+1 = Bxt + Cet (12)

A =




0 fy+1

I 0


 B =



−fy−1 −fy

0 I


 xt =




I

gy−1


 ŷt−1 C =



− (fyge + fe)

ge




This represents the approximate linear model as a first order linear stochastic difference

equation, from which, by applying techniques used for solving LRE models, we can obtain gy−1.

This includes applying a generalised Schur decomposition to matrices A and B, solving the

generalised eigenvalue problem, λAx = Bx, verifying the well-known Blanchard-Kahn condition

(the number of generalised eigenvalues that are larger than one in absolute value must be equal

to the number of endogenous forward-looking variables) and a rank condition on one of the

matrices resulting from the decomposition. Recovering ge is then straightforward from (10).

Having found the form of matrices gy−1 and ge we simply have to define some initial condi-

tions for the endogenous variables, ŷ0, and obtain values for the parameters, to be able to use

the model for all types of ”computational experiments”. I impose the assumption that ŷ0 are

drawn from a Normal distribution, which will become clear in the next subsection.

Note that since the endogenous variables are expressed as percentage deviations of the orig-

inal variables from the steady-state, the results of the simulations have to be interpreted ac-

cordingly. Furthermore, it is important to be aware that the performed approximation is only a

local one, around the steady-state, and therefore experiments should not deviate the economy

considerably from the steady-state, since in this case the approximation will no longer be valid.
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3.2 Estimation

Calibration

As commonly done in the DSGE literature, some parameters were calibrated from the outset,

instead of estimated. This helps to cope with the already discussed identification problems from

which DSGE models commonly suffer, which in small scale models may be solved by carefully

analysing each equation, but in medium/large-scale models is hardly solvable. Furthermore,

incorporating fixed parameters in the estimation process can be viewed as imposing a very strict

prior, being therefore consistent with the Bayesian approach to estimation.

All parameters exclusively affecting the dynamic behaviour of the model were estimated,

with only parameters affecting the steady-state being calibrated. Among these, the calibrated

parameters were those belonging to at least one of the following categories: those crucial to

obtain a model’s steady-state able to replicate the main steady-state key ratios of the Por-

tuguese economy; those for which reliable estimates already exist; and those for which, although

estimation was attempted, a satisfactory identification was not achieved.

Likelihood function

To perform the estimation of the remaining parameters, using Bayesian MLE, the first step is

obtaining the likelihood function, which corresponds to the joint density of all variables in the

data sample, conditional on the structure and parameters of our model. For this, we first need

to establish a relation between the data and the model, which is done by considering that the

measured variables can be explained partly by the model’s variables and partly by some factors

that the model is unable to measure, i.e.:

y∗t = F ŷt + Gut (13)

where y∗t represents the vector of observed variables, F is a matrix establishing the link between

the model’s endogenous variables and the data, ut stands for the vector of measurement errors

and G consists of a matrix defining the role of measurement errors in each observed variable.

The measurement errors are assumed to be Gaussian white noise processes, such that:

ut ∼ N(0,Σu) E(utu
′
s) = 0 t 6= s

15



Denoting gy−1 and ge in (7) by D and E, respectively, and combining with (13) we obtain

the model’s state-space representation:

ŷt = Dŷt−1 + Eet (14)

y∗t = F ŷt + Gut (15)

Since et, ŷ0, and ut are all normally distributed, it must be that ŷt and y∗t are also normal.

Denoting the whole data sample by y∗, and using a predictor error decomposition, we can then

write the log-likelihood function as:

L(y∗|θ) = −Tn

2
log 2π − 1

2

T∑
t=1

log |Σy∗ t|t−1| −
1
2

T∑
t=1

(
y∗t − y∗t|t−1

)′
Σy∗ t|t−1

−1
(
y∗t − y∗t|t−1

)
(16)

where y∗t|t−1 is a predictor of y∗t using information up to t − 1, Σy∗ t|t−1 is a predictor of the

variance-covariance matrix of y∗t using information up to t−1, and θ is the vector of parameters

being estimated, on which y∗t|t−1 and Σy∗ t|t−1 depend. These are computed in a recursive way,

using the Kalman filter.

Prior distributions

The next step is the specification of the prior distributions, p(θ). Each prior is a probability

density function of a parameter, constituting a formal way of specifying probabilities to the

values that parameters can assume, based on past studies or/and occurrences or simply reflecting

subjective views of the researcher. It is a representation of belief in the context of the model, set

without any reference to the data, constituting an additional, independent, source of information.

The prior’s functional form is specified on the basis of each parameter’s characteristics,

namely: inverse gamma distribution for parameters bounded to be positive; beta distribution

for parameters bounded between zero and one; normal distribution for non bounded parameters.

To set the parameters defining each distribution (mean and standard deviation) parameters

are grouped into those for which there are relatively strong a priori convictions, which comprises

the model’s core structural parameters, and those for which there is great uncertainty, which

includes the parameters characterising the shocks. Priors for the first type of parameters are

based on the existing empirical evidence and their implications for macroeconomic dynamics.

For parameters of the second type, although existing studies are also used, the strategy is mainly

to set priors with reasonable means and a large support so that the distribution can cover a
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considerable range of parameter values, i.e., priors that are only weakly informative.

Since priors are generated from well-known densities, its computation is straightforward.

Posterior distributions

Having derived the likelihood and specified the priors the posterior distribution, p (θ|y∗), which

represents the probabilities assigned to different values of the parameters after observing the

data, is then estimated. It basically constitutes an update of the probabilities given by the

prior, based on the additional information provided by the variables in our sample. Applying

the Bayes theorem to the two random events θ and y∗, the posterior distribution is given by:

p (θ|y∗) =
p (θ, y∗)
p (y∗)

=
p (y∗|θ) p (θ)

p (y∗)
(17)

where p (θ, y∗) is the joint density of the parameters and the data, p (y∗|θ) is the density of the

data conditional on the parameters (the likelihood), p (θ) is the unconditional density of the

parameters (the prior) and p (y∗) is the marginal density of the data. Note that p (y∗) does not

depend on θ and therefore can be treated as a constant for the estimation, producing:

p (θ|y∗) ∝ p (y∗|θ) p (θ) = K (θ|y∗) (18)

where K (θ|y∗) is the posterior kernel, proportional to the posterior by p (y∗). Taking logs:

lnK (θ|y∗) = ln p (y∗|θ) + ln p (θ) = L(y∗|θ) + ln p (θ) = L(y∗|θ) +
∑ג

x=1

ln p (θx) (19)

where ג is the number of parameters being estimated and priors are assumed to be independent.

This function is analytically intractable, implying the use of numerical methods. Specifically,

Christopher Sims’s routine, csmiwell, is used to maximise (19) with respect to θ to obtain

estimates for the mode of the posterior, θm, and for the Hessian matrix evaluated at the mode,

H(θm) (note that the maximum of p (θ|y∗) will be the same as the maximum of K (θ|y∗)) and

then the Metropolis-Hastings (MH) algorithm is used to simulate the posterior distributions.

3.3 Evaluation

To assess the quality of the estimated model, two classes of aspects are considered: validation

of the estimation procedures and results; ability of the model to fit the data’s characteristics.
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Checking the estimation diagnosis and results

The first check is the quality of the posterior kernel maximisation, which is done by plotting

the minus of the function for values around the estimated mode, for each parameter in turn. If

the mode is not at the trough of the function, the numerical procedure is having a hard time

finding the optimum, which can be due to poor priors or identification problems.

Secondly, the parameters mode and standard deviation estimates are inspectioned, to en-

sure that they are plausible both from a statistical and an economic point of view. For this,

comparison with previous studies and evidence from micro data can be of extreme usefulness.

Thirdly, the convergence properties of the MH algorithm are inspectioned. For this, several

runs of MH simulations are conducted, each one with a different initial value, and for each run

a large number of draws is performed. If convergence is achieved, and the optimiser did not get

stuck in an odd area of the parameter subspace: results within each run’s iterations should be

similar; results between different runs should be close.

Fourthly, the simulated posteriors are inspectioned to check if: they are approximately nor-

mal; are not too different nor too similar to the priors6; the modes are not too far from the ones

obtained from the maximisation of the posterior kernel.

Fifthly, the estimates of the innovations are inspectioned to eye-ball their plausibility, par-

ticularly if they exhibit a stationary, i.i.d, behaviour and are centered around zero.

Finally, sensitivity analysis are performed by changing some assumptions concerning the

priors and comparing the obtained results with the benchmark model.

Assessing the fit of the model

Having checked the estimates robustness and reasonability, the ability of the estimated model

to match the properties of the data is inspectioned.

This is done by, firstly, comparing a set of relevant statistics (mean, variance, etc.) com-

puted for the actual data to the same set of statistics computed for data simulated with the

model. Secondly, the Kalman filter estimates of the observed variables can be given the same

interpretation as the fitted values of a regression, and are therefore loosely interpreted as the
6If they are very distinct, priors may be imposing erroneous restrictions on the data. If they are very close,

results are probably being mostly led by the prior and only marginally by the data. While the prior should
exclude regions of the parameter space that are unreasonable, it should also be reasonably uninformative on the
interesting portions of the parameters space to let the data speak and avoid misleading conclusions. The shift
from prior to posterior is an indicator of the tension between the two sources of information, prior and data. If,
for a given parameter, the two distributions are virtually the same, one can conclude that the estimates are being
determined by the prior and that either the data is silent on that parameter or we are not allowing it to speak.
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in-sample fit of the model. Thirdly, the relative fit of the model is explored, through comparison

with alternative specifications of the model.

The crucial tool to perform model comparison in a Bayesian framework is the marginal

likelihood function, p (y∗|i). It corresponds to the density of the data, conditional on the model

but unconditional on the parameters, constituting a measure of the likelihood attributed by the

model to the observed data independently of the parameters, being therefore a measure of the

model’s unconditional overall fit. It is obtained by integrating out the parameters from the joint

density of the data and the parameters which, recalling (18), is equivalent to:

p (y∗|i) =
∫

θi

p (y∗, θi|i) dθi =
∫

θi

p (y∗|θi, i) p (θi|i) dθi =
∫

θi

K (θi|y∗, i) dθi (20)

where p (θi|i), p (y∗|θi, i) and K (θi|y∗, i) are simply the prior, likelihood and posterior kernel,

stated as a function of model i7. This function is analytically intractable, being necessary to recur

to numerical approximations, the Laplace approximation and the Harmonic mean estimator.

Using the marginal likelihood, one can compute the posterior odds ratio between any two

models, i and j, given by the ratio of each model’s posterior probability, i.e. the probability of

the model being true, after observing the data:

POi,j =
p(i|y∗)
p(j|y∗) =

p(y∗|i)p(i)
p(y∗)

p(y∗|j)p(j)
p(y∗)

=
p(i)
p(j)

p(y∗|i)
p(y∗|j) =

p(i)
p(j)

BFi,j (21)

where BFi,j = p(y∗|i)
p(y∗|j) is the Bayes factor, summarising the evidence in the data in favour of

model i over model j and p(i)
p(j) is the prior odds ratio, summarising the relative probability one

attributes a priori to the two different models.

This way, the posterior odds ratio provides a measure of the relative adequacy of each model

based not only on their fit, given by the Bayes factor, but also on the beliefs one has a-priori on

the models’ quality, given by the prior odds ratio. The optimal decision is naturally to select

the model with the highest posterior support, i.e., if POi,j > 1 choose model i and vice-versa.

Finally, some applications of the estimated model are explored namely the IRFs, which

provide estimates of the effect of each shock on the endogenous variables, and the variance

decomposition, which decomposes the variance of the endogenous variables into the contributions

of the variance of each shock. For the IRFs, we obtain not only point estimates but also

confidence intervals, by using the draws produced by the MH algorithm.
7This was not made explicit before for notational simplicity.
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4 The model

A general overview of the model is now provided8. A detailed description is given in the Appendix

including all steps needed to obtain the model equations at their stationary, aggregate, levels as

well as the steady-state and log-linear versions of the model.

The model is a New-Keynesian DSGE model for a small open economy (Portugal) integrated

in a monetary union (Euro area). The economy is composed by five types of agents namely

households, firms, aggregators, the rest of the world (RW) and the government. It is assumed

from the outset that monetary policy is totally defined by the union’s central bank (ECB) and

that the domestic economy’s size is negligible, relative to the union’s one, and therefore its

specific economic fluctuations have no influence on the union’s macroeconomic aggregates and

monetary policy. Furthermore, it is assumed that the RW is strictly composed by the members of

the monetary union (excluding the domestic economy) and that therefore the nominal exchange

rate is irrevocably set to unity. The model includes several shocks, which enable a closer matching

of the short-run properties of the data, and a number of real and nominal frictions, which allow

for a more realistic short-term adjustment to shocks.

4.1 Households

There is a continuum of households, indexed by i ∈ (0, 1). A representative household derives

utility at time t from consumption of a private consumption good, Ct(i), relative to a consump-

tion habit, Ht(i), and from leisure, 1 − Lt(i), where Lt(i) is the amount of labour supplied by

the household. The household’s lifetime utility function, describing the expected value of the

discounted sum of future utilities, is given by:

E0

∞∑

t=0

βtUt(i) = E0

∞∑

t=0

βt

{
εc
t ln [Ct(i)−Ht(i)]− εl

t

1 + σl
Lt(i)1+σl

}
(22)

where Ut(i) is the instantaneous utility function, representing each period contribution to lifetime

utility 9, 0 ≤ β ≤ 1 is the time discount factor, which captures the fact that households typically

value future utility less than present utility, 0 < σl < ∞ is the inverse of the elasticity of work

effort with respect to (w.r.t.) the marginal disutility of labour and εc
t and εl

t are preference

shocks to consumption and labour, respectively.
8The expectations operator has been purposely suppressed from the equations, for the sake of notation sim-

plicity.
9Following Woodford (2003) and most of the recent literature a cashless limit economy is considered.
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Habits are endogenous, defined as a proportion of the household’s consumption in t− 1:

Ht(i) = hCt−1(i) (23)

where 0 ≤ h ≤ 1 determines the degree of habit persistence.

Labour is differentiated over households, with each one being a monopoly supplier of a

particular variety of labour. Households sell these varieties to a labour aggregator who bundles

them to produce an homogeneous labour input, which is then supplied to domestic good firms.

Being a monopoly supplier of a particular variety of labour, each household has some decision

power over the wage it charges, Wt(i). However, it cannot set its wage optimally in every

period, being subject to an indexating variant of a Calvo type mechanism. The household can

only set its price freely if it receives a ”wage-change signal” which occurs randomly at a constant

(exogenous) probability, 1− ξw, in which case it sets a new, optimal, wage, W̃ 0
t (i). 1− ξw is also

the proportion of households that get to reoptimise their price in each period and defines the

duration of wage contracts, given by 1
1−ξw

. Households that do not receive the ”signal” update

their previous period wage by indexating it to the current inflation rate target, π̄t =
(

Pt
Pt−1

)
,

modelled as a shock, the previous numeraire inflation rate, πt−1 = Pt−1

Pt−2
and the current growth

rate of the technology level, ζt. More formally, a household who does not reoptimise in period t

sets its wage as:

Wt(i) = πκw
t−1π̄

1−κw
t ζtWt−1(i) (24)

where 0 ≤ κw ≤ 1 is the degree of wage indexation to πt−1.

Besides consuming and working, households invest in capital stock and rent it to domestic

good firms at the rental rate Rk
t . Capital follows an accumulation equation, which states that

the capital stock available at the beginning of period t+1, Kt+1(i), (or equivalently, the capital

stock available at the end of period t) is equal to the capital stock available in the beginning

of period t, Kt(i), net of period t capital stock depreciation, δKt(i), with 0 ≤ δ ≤ 1 being the

depreciation rate, plus the amount of capital accumulated during period t, which is determined

by the investment made during that period, It(i). Investment is subject to adjustment costs,

which are a positive function of changes in the household’s investment from period t − 1 to

period t, S
(

It(i)
It−1(i)

)
, which satisfies the properties S(ζ) = 0, S′(ζ) = 0, S′′(ζ) > 0. Furthermore,
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investment is subject to a shock, εi
t. The capital accumulation equation is then given by:

Kt+1(i) = (1− δ)Kt(i) + εi
t

[
1− S

(
It(i)

It−1(i)

)]
It(i) (25)

Furthermore, each household saves both in domestic and foreign bonds. Domestic bonds,

Bt(i), are bought from the government and yield the domestic nominal interest rate prevailing

at the time the decision is taken, Rt−1. The stock of bonds is assumed to be non-negative,

meaning that households are not allowed to borrow from the government. Foreign bonds, B∗
t (i),

are bought from the RW and can be either positive or negative, with the household being a

net borrower when B∗
t (i) < 0 and a net lender when B∗

t (i) > 0. As it is common in the

literature on small-open economy models, foreign bonds yield the foreign nominal interest rate,

R∗
t−1, adjusted by a risk-premium, Φ

(
b̈∗t , ε

φ
t−1

)
, assumed to be a decreasing function of the

real stationary holdings of foreign assets of the entire domestic economy, b̈∗t = B∗t
zt+1Pt+1

and an

increasing function of a risk-premium shock, εφ
t
10. The premium is assumed to be neutral (equal

to one) when b̈∗t and εφ
t are zero, larger than one when b̈∗t is negative or/and εφ

t is positive, and

smaller than one when b̈∗t is positive or/and εφ
t is negative. This implies that when the economy

is a net debtor, households will have to pay a remuneration higher than R∗
t−1 to contract foreign

debt whereas when the economy is a net lender they will receive a remuneration lower than R∗
t−1

if they wish to sell their foreign assets. This way, the risk-premium works as a disincentive to

buy/sell foreign bonds, acting as a stabiliser of B∗
t (i), being crucial to pin down a well-defined

steady-state for consumption and assets. It is assumed that Φ
(
b̈∗t , ε

φ
t−1

)
= exp

(
−b̈∗t + εφ

t−1

)
.

In the steady-state, it is assumed that R = R∗, implying that b̈∗ = εφ = 0.

Households pay taxes on consumption, τ c
t , and labour-income, τ l

t , to the government who

provides them with lump-sum transfers, TRt. The after tax price of consumption good, Pt =

(1 + τ c
t ) P c

t , is assumed to be the numeraire with πt = Pt
Pt−1

being the numeraire inflation rate.

Each household participates in a market of state-contingent securities, with the net cash

inflow from participating in it being given by PtAt(i). Having state-contingent securities, each

household is insured against its labour-income uncertainty (arising from the fact that it does not

know which wage it will be able to charge in each period) so that Wt(i)Lt(i) + PtAt(i) is equal

for all households, eliminating the labour-income uncertainty, making expenditure decisions

perfectly symmetric for all households. The aggregate value of the state-contingent assets is

assumed to be zero, i.e. Pt

∫ 1
0 At(i)di = 0.

10See for example Benigno (2001), Schmitt-Grohé and Uribe (2001) and Schmitt-Grohé and Uribe (2003).
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Finally, households own all the firms in the economy receiving their profits in the form of

dividends, DIVt(i). It is assumed that dividends are distributed equally among households and

therefore DIVt(i) = DIVt.

Thus, in every period, households have at their disposal: the domestic and foreign bonds

they accumulated from the previous period plus the interest they earned on them, Rt−1Bt(i) +

R∗
t−1Φ

(
b̈∗t , ε

φ
t−1

)
B∗

t (i); the wage they receive for their labour supply, subtracted by the labour-

income tax,
(
1− τ l

t

)
Wt(i)Lt(i); the net income from their state-contingent securities, PtAt(i);

the income received from renting the capital stock they accumulated in the previous period,

RK
t Kt(i); and the lump-sum transfers they receive from the government, TRt. These resources

can be used for: accumulation of domestic and foreign bonds, Bt+1(i) + B∗
t+1(i); consumption,

together with the consumption tax payment, (1 + τ c
t ) P c

t Ct(i); and investment, P i
t It(i). The

household’s flow budget constraint, defining that in each period its expenditure must equal its

resources, is then given by:

Bt+1(i) + B∗
t+1(i) + (1 + τ c

t ) P c
t Ct(i) + P i

t It(i) = Rt−1Bt(i) + R∗
t−1Φ

(
b̈∗t , ε

φ
t−1

)
B∗

t (i)+

+
(
1− τ l

t

)
Wt(i)Lt(i) + PtAt(i) + Rk

t Kt(i) + TRt + DIVt (26)

A complete description of the household’s problem requires the specification of a limit on

borrowing to prevent Ponzi-type schemes. This in turn requires the introduction of the stochastic

discount factor concept, used by households to obtain the present value of its future financial

income streams, at any period t + s, which is given by:

ρt+s =
s∏

l=1

1
Rt+l−1

for s > 0 (= 1 for s = 0) (27)

The no-Ponzi game condition is then given by:

lim
s→∞Et

{
ρt+s

(
Bt+s + B∗

t+s

)}
= 0 (28)

which states that the present discounted value of debt at infinity must be zero.

The representative household’s optimisation problem is to choose the levels of consumption,

domestic and foreign bonds, investment and capital stock that maximise (22) subject to the

constraints imposed by (23), (25) and (26). Furthermore, households also have to set the utility

maximising wage for their labour services, subject to the constraints imposed by (24), (26)
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and the demand from the labour aggregator given in (43). A household who does not get to

reoptimise, simply sets its wage according to (24). A household who gets to reoptimise, considers

all future possible states of nature, noting that its entire utility flow will possibly depend on the

wage it sets in t, according to whether it gets to reoptimise again or not. Solving this problem

for every period, we see that it can be summed down to the maximisation of expected utility

considering only the scenario where the household never reoptimises again, weighting each period

utility by the probability that the household does not reoptimise its wage in that period.

Solving the optimisation problem, we obtain six first order conditions (FOC), which can be

summarised in the following five equations. The consumption Euler equation:

U c,life
t+1 (i)

U c,life
t (i)

=
1

βRr
t

(29)

where Rr
t = Rt

πt+1
is the domestic real interest rate and U c,life

t (i) = εc
t

Ct(i)−hCt−1(i)−βh
εc
t+1

Ct+1(i)−hCt(i)

is the extra utility a household obtains from increasing consumption by one unit in t. Note that,

using (29), (27) can be written as:

ρt+s =
s∏

l=1

β
Pt+l−1

Pt+l

U c,life
t+l (i)

U c,life
t+l−1(i)

= βs Pt

Pt+s

U c,life
t+s (i)

U c,life
t (i)

(30)

The modified uncovered interest rate parity (UIP) condition:

Rt = R∗
t Φ

(
b̈∗t+1, ε

φ
t

)
(31)

The FOC w.r.t. investment:

Qt(i)εi
t

[
1− S

(
It(i)

It−1(i)

)
− S′

(
It(i)

It−1(i)

)
It(i)

It−1(i)

]
+

+ Qt+1(i)Rr
t ε

i
t+1S

′
(

It+1(i)
It(i)

)(
It+1(i)
It(i)

)2

=
P i

t

Pt
(32)

where Qt(i) is the marginal utility of capital in terms of the marginal utility of consumption,

which gives the relative value of investing in more capital stock, in terms of consumption.

The FOC w.r.t. the capital stock:

Qt(i) = Rr
t

(
Rk

t+1

Pt
+ Qt+1(i) (1− δ)

)
(33)
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For a household that gets to reoptimise its wage in t, the FOC w.r.t. wage:

Et

∞∑

s=0

(βξw)s Lt+s(i)

{
U l

t+s(i)µw +
W̃ 0

t (i)
Ptzt

Xw
t+s

Pt+s

Pt

(
1− τ l

t+s

)
zt+sU

c,life
t+s (i)

}
= 0 (34)

Xw
t+s =





1 if s = 0

(πt+s−1...πt)
κw (π̄t+s...π̄t+1)

1−κw if s > 0

and where U l
t+s(i) = −εl

tLt(i)σl the marginal (dis)utility of wage optimising households from

supplying an additional unit of labour.

Furthermore, note that all optimising households face the same conditions, behaving sym-

metrically, and therefore Kt(i) = Kt, It(i) = It, Ct(i) = Ct, Bt(i) = Bt, B∗
t (i) = B∗

t , U c,life
t (i) =

U c,life
t , Qt(i) = Qt

11. We can then easily define households’ aggregate demand for consump-

tion, investment and domestic and foreign bonds and supply for capital as Ct =
∫ 1
0 Ct(i)di,

It =
∫ 1
0 It(i)di, Bt =

∫ 1
0 Bt(i)di, B∗

t =
∫ 1
0 B∗

t (i)di and Kt =
∫ 1
0 Kt(i)di, respectively.

4.2 Firms

Focusing now on the supply side, there are two categories of firms operating in the economy:

intermediate and final good firms.

Intermediate good firms

Intermediate good firms are of three types: domestic, import and composite good firms.

Domestic good firms

There is a continuum of domestic good firms, indexed by j ∈ (0, 1). A representative firm

produces a specific variety of domestic good, Y d
t (j), by combining capital, Kt(j), and labour,

Lt(j), selling its product to the domestic good aggregator. The good is produced using the

following Cobb-Douglas technology:

Y d
t (j) = z1−αd

t εa
t Kt(j)αdLt(j)1−αd − ztφd (35)

11Note however that this is not valid for Wt(i) and Lt(i), since these include households who are not optimising
their wages, and therefore have an asymmetric behaviour from households that are optimising their wages.
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where 0 ≤ αd ≤ 1 is the capital income share, φd is a fixed cost of production, zt is a unit root

technology level, common to the domestic and foreign economies, with growth rate ζt = zt
zt−1

,

modelled as a shock, and εa
t is a domestic, stationary, technology shock. The fixed cost is

introduced to ensure zero profits in the steady-state and is assumed to grow with zt since

otherwise it would vanish and profits would systematically be positive.

Each firm rents capital and hires labour from households in perfectly competitive markets

taking the wage, Wt, and the rental rate of capital, Rk
t , as given. In their output market,

however, firms work in a monopolistically competitive environment, exploiting the power they

have over their price, P d
t (j), arising from the fact that their product is differentiated. Like

in the wages case, the price setting decision is modelled as an indexation variant of the Calvo

mechanism. Firms only update their prices if they receive a ”price-change signal”, which occurs

with a constant (exogenous) probability, 1 − ξd, in which case it sets a new, optimal, price,

P̃ d
t (j). 1 − ξd is also the proportion of firms that get to reoptimise and defines the duration of

domestic good price contracts, given by 1
1−ξd

. Firms that do not receive the ”signal” update

their previous period price by partially indexating it to the current inflation rate target and to

the previous period domestic good inflation rate, πd
t−1 =

P d
t−1

P d
t−2

. More formally, a domestic good

firm which does reoptimise its price sets it according to:

P d
t (j) = πd

t−1
κd

π̄1−κd
t P d

t−1(j) (36)

where 0 ≤ κd ≤ 1 is the degree of domestic good price indexation to πd
t−1.

All firms choose labour and capital to minimise the cost of producing a certain amount

of domestic good, subject to (35), which produces two FOC that can be summarised into an

equation for the capital-labour demand ratio:

Kt(j)
Lt(j)

=
αd

1− αd

Wt

Rk
t

(37)

In addition, we obtain the firm’s marginal cost, given by:

MCd
t (j) =

1
zt

1−αdεa
t

(
1
αd

)αd
(

1
1− αd

)1−αd

W 1−αd
t Rk

t
αd (38)

Besides solving the cost minimisation problem, firms have to decide on the profit maximising

price to charge for their output. A firm who does not get to reoptimise, will simply set its price
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according to (36). A firm who receives the ”Calvo signal”, and therefore gets to reoptimise, will

choose a price that maximises its expected profits in all future possible states of nature, taking

into account that the entire flow of profits will possibly depend on the price set in t, according to

whether the firm reoptimises its price again or not. Just as in the wages case, the problem can

be summed down to the maximisation of expected profits only considering the scenario where

the firm never gets to reoptimise again, weighting each period’s profit by the probability that

the firm does not reoptimise in that period and incorporating the constraints imposed by (36)

and the demand from the domestic good aggregator, given in (45). Since firms are owned by

households, they will maximise expected profits using the stochastic discount factor applied by

households to discount their future financial income streams, ρt+s. Solving this problem, the

following FOC is obtained:

Et

∞∑

s=0

(βξd)
s U c,life

t+s

µd
t+s − 1

Y d
t+s(j)

P d
t+s

Pt+s





Xd
t+s

P d
t+s

P d
t

P 0,d
t (j)
P d

t

− MCd
t+s

P d
t+s

µd
t+s





= 0 (39)

Xd
t+s =





1 if s = 0

(
πd

t+s−1...π
d
t

)κd (π̄t+s...π̄t+1)
1−κd if s > 0

Import good firms

There is a continuum of import good firms, indexed by m ∈ (0, 1). A representative firm buys

a certain amount of homogeneous foreign good, Mt, and turns it into a differentiated import

good, Y m
t (m), by brand naming, selling it to the import good aggregator. Like domestic good

firms, import good firms are subject to fixed production costs, ztφm.

These firms operate in perfect competition in their input market, taking the price of the

foreign good, P ∗
t , as given, which constitutes the firm’s marginal cost, being equal for all firms.

In their output markets, however, they work in monopolistic competition, deciding on the price

to charge for their product Pm
t (m), in a perfectly analogous way to domestic good firms.

Composite good firm

There is one composite good firm that buys the homogeneous domestic good, Y d
t , and the

homogeneous import good, Y m
t , from their respective aggregators and combines them to produce

a homogeneous composite good, Y h
t ,which is then sold to final good firms. The good is produced
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via the following CES technology:

Y h
t =

[
(1− ωh)

1
ϑh Y d

t

ϑh−1

ϑh + ω
1

ϑh
h Y m

t

ϑh−1

ϑh

] ϑh
ϑh−1

(40)

where 0 ≤ ωh ≤ 1 is the quasi-share of import good in the production of composite good and

1 < ϑh < ∞ is the elasticity of substitution between domestic and import goods.

The firm operates in a perfectly competitive environment, taking the prices of the domestic

and import goods, P d
t and Pm

t , and the price of its output, P h
t , as given.

The firm’s problem is to decide on the combination of domestic and import good that min-

imises the cost of producing a certain quantity of composite good subject to (40), which produces

two FOC that can be summarised into an equation for the import-domestic good demand ratio:

Y m
t

Y d
t

=
ωh

1− ωh

(
P d

t

Pm
t

)ϑh

(41)

Note that the composite firm’s demand for import good must correspond to total imports,

i.e. Y m
t = Mt.

Final good firms

Final good firms are of four types: private consumption, investment, government consumption

and export, indexed by f ∈ {C, I, G, X}. For each type there is a continuum of firms, indexed

by n ∈ (0, 1), who buy an amount of composite good, Y f
t , and differentiate it, by brand naming,

producing different varieties of type f final good, Y f
t (n), which are then sold to their respective

aggregators. Like domestic and import good firms, each final good firm is subject to fixed

production costs, ztφf .

These firms operate in perfect competition in their input markets, taking the price of the

composite good, P h
t , as given, which constitutes each firm’s marginal cost, being equal for all

firms. In their output markets, however, they work in monopolistic competition, deciding on the

price to charge for their differentiated products P f
t (n), in a perfectly analogous way to domestic

and import good firms.

4.3 Aggregators

Aggregators solve the mismatch between the supply of differentiated products and the demand

for homogeneous products. For each type of differentiated product being supplied, there is an
28



aggregator that buys the different varieties and combines them to produce an homogeneous

product that can satisfy the economy’s demand, using a CES technology. All the aggregators

operate in a perfectly competitive environment both in their input and output markets, and

therefore take the price of both their inputs and output as given.

The labour aggregator buys the different labour varieties from households and combines

them to produce an homogeneous labour input, Lt, which it then sells to the domestic good

firms at wage Wt. The homogeneous labour input is given by:

Lt =
(∫ 1

0
Lt(i)

1
µw di

)µw

(42)

where 1 < µw < ∞ is the wage markup, which is dependent on the elasticity of substitution

between varieties of labour, 1 < ϑw < ∞, such that µw = ϑw

ϑw−1
12.

The problem of the labour aggregator is to decide on the combination of different labour

varieties that minimises the cost of producing Lt, subject to (42). This produces the following

FOC w.r.t. each variety of labour:

Lt(i) =
(

Wt

Wt(i)

) µw
µw−1

Lt (43)

The domestic/import good aggregators buy the different varieties of domestic/import good

from the domestic/import good firms and combine them to produce an homogeneous domes-

tic/import good, Y d
t /Y m

t , which they then sell to the composite good firm at price P d
t /Pm

t . For

each type of final good there is an aggregator, which takes the different varieties of type f final

good and combines them to produce an homogeneous type f final good, Y f
t , which is then sold

to households, the government and the RW at price P f
t .

Analogously to the labour case, the homogeneous goods are given by:

Y s
t =

(∫ 1

0
Y s

t (r)
1

µs
t dr

)µs
t

(44)

and the FOC w.r.t. each variety of each good is equal to:

Y s
t (r) =

(
P s

t

P s
t (r)

) µs
t

µs
t−1

Y s
t (45)

12The wage markup is considered to be time-invariant, contrary to the other markups, to prevent identification
problems generated by the coexistence of two shocks, the wage markup shock and the labour supply shock, in the
log-linearised wage equation. For a thorough discussion of this, please refer to Adolfson et al. (2005).
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for s = d,m, f and r = j,m, n, and where 1 < µs
t < ∞ is the good’s price markup, modelled as

a shock, dependent on the elasticity of substitution between varieties of the good, 1 < ϑs
t < ∞,

such that µs
t = ϑs

t
ϑs

t−1 .

4.4 Rest of the world

The RW is strictly composed by the members of the monetary union (excluding the domestic

economy) implying that the nominal exchange rate is irrevocably set to unity. It interacts with

the home economy by selling an homogeneous foreign good, buying the final export good and

selling foreign bonds. It combines the domestic economy’s export good with its own domestic

good to produce its good, Y ∗
t , using a CES technology. The demand for the domestic export

good, which corresponds to domestic exports, Xt, is exogenously given as:

Xt = ω∗εϑ∗
t Y ∗

t (46)

where εt = P ∗t
P x

t
is the real exchange rate, 0 ≤ ω∗ ≤ 1 is the quasi-share of domestic export good

in the production of the foreign good and 1 < ϑ∗ < ∞ is the foreign economy’s elasticity of

substitution between the domestic export good and the foreign good.

RW’s variables (inflation, output and interest rate) are assumed to be exogenous, given as

shocks. Furthermore, a stationary asymmetric (or foreign) technology shock, ζ∗t = z∗t
zt

, is assumed

where z∗t is the permanent technology level abroad (used to render Y ∗
t stationary), to allow for

temporary differences between domestic and foreign permanent technological progresses.

4.5 Government

The government spends resources on the acquisition of the government consumption good, P g
t Gt,

payment of debt services, (Rt−1 − 1)Bt, and transfers to households, TRt, and obtains resources

from taxes, τ c
t P c

t Ct + τ l
t

∫ 1
0 Wt(i)Lt(i)di, and debt issuance, Bt.

The government’s primary deficit, i.e. the difference between the government’s current spend-

ing and revenue, excluding debt related resources and expenditures, is then given by:

SGprim
t = P g

t Gt + TRt − τ c
t P c

t Ct − τ l
t

∫ 1

0
Wt(i)Lt(i)di (47)
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The government’s total deficit also includes interest outlays, being given by:

SGtot
t = SGprim

t + (Rt−1 − 1)Bt (48)

The government’s budget constraint, defining that its total resources must equal its total

expenditures, can then be written as:

Bt+1 + τ c
t P c

t Ct + τ l
t

∫ 1

0
Wt(i)Lt(i)di = Rt−1Bt + TRt + P g

t Gt ⇔ Bt+1 = Bt + SGtot
t (49)

To prevent an explosive debt path a fiscal rule is imposed, which restricts SGprim
t such that

TRt adjusts endogenously to ensure that the debt to Gross Domestic Product (GDP) ratio

converges to a long-term, pre-specified value. The rule is given in its stationary form by:

s̈gprim
t

¨gdp
= −dg

(
b̈t+1

¨gdp
−

(
b̈
¨gdp

)tar)
(50)

where
(

b̈
¨gdp

)tar
is the target value for the stationary debt to GDP ratio. Whenever the debt

to GDP ratio is above its target value, transfers automatically decrease in order to reduce the

government’s expenditures and consequently minimise its deficit and future period debt.

The fiscal policy variables (taxes and expenditures) are exogenously given as shocks. Steady-

state expenditures are determined by a government expenditure to output ratio parameter, gy.

4.6 Market clearing conditions

Finally, consider the market clearing conditions needed to close the model.

In the labour market, supply by the aggregator must equal demand by domestic good firms:

Lt =
∫ 1

0
Lt(j)dj (51)

In the capital market, supply by households must equal demand by domestic good firms:

Kt =
∫ 1

0
Kt(j)dj (52)

In the composite good market, supply by the composite good firm must equal demand by
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the final good aggregators:

Y h
t = Y c

t + Y i
t + Y g

t + Y x
t (53)

In the final good market, supply by the aggregators must equal demand by households, the

government and the RW:

Y c
t = Ct (54)

Y i
t = It (55)

Y g
t = Gt (56)

Y x
t = Xt (57)

In the foreign bond market, households’ net bond holdings must equal the economy’s trade

net position:

B∗
t+1 −R∗

t−1Φ
(
b̈∗t , ε

φ
t−1

)
B∗

t = P x
t Xt − P ∗

t Mt (58)

Finally, consider the measure of GDP, which following the National Accounts definition

corresponds to the sum of demand expenditures, including consumption taxes and excluding

expenditures with imports:

GDPt = PtCt + P i
t It + P g

t Gt + P x
t Xt − P ∗

t Mt (59)

4.7 Shocks

The stochastic behaviour of the model is driven by twenty structural shocks which are all given

by the following univariate representation:

ξi
t =

(
1− ρξi

)
ξ̄i + ρξiξi

t−1 + ηξi,t ηξi,t ∼ N(0, σ2
ξi) (60)

where all innovations are assumed to be independent and identically distributed (i.i.d.), i =
{

εi, εc, εφ, εl, εa, µd, µm, µc, µi, µg, µx, π̄, ζ, ζ∗, π∗, Ÿ ∗, R∗, τ l, τ c, G̈
}

and E(ξi
t) = ξ̄i. In the cases

of
{
εi, εc, εl, εa, ζ∗

}
it is assumed that ξ̄i = 1.
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5 Estimation for the Portuguese economy

This section provides all empirical aspects concerning the estimation of the model with Por-

tuguese data.

5.1 Data

To compute the key steady-state ratios, used in the calibration, I used annual data, between 1988-

2007, taken from the annual National Accounts dataset, available from the Statistics Portugal

Institute (INE). Some of the chosen series have an extremely erroneous behaviour prior to 1988,

which motivated the exclusion of this period from the sample.

For the estimation I used quarterly data, over the same period. Portuguese data was taken

from the “Quarterly Series for the Portuguese Economy: 1977-2007” in the Summer 2008 issue

of Banco de Portugal’s Economic Bulletin. Euro area data was taken from the Area Wide Model

(AWM) database13, originally presented in Fagan, Henry and Mestre (2001), that has become

a standard reference for empirical studies using euro area data. To my knowledge however, the

most recent update is only until 2005Q4. To obtain data for 2006 and 2007, I recurred to the

Eurostat database and used the implied growth rates in its series to extend the AWM ones.

I chose to match thirteen variables: GDP inflation, private consumption good inflation (in-

cluding taxes), investment good inflation, real wages, real private consumption, real investment,

real GDP, employment, real exports, real imports, nominal interest rate, foreign real GDP and

foreign nominal interest rate. All inflation rates were obtained as the fourth order difference of

the log of their respective deflator. Real wages were obtained by scaling nominal wages by the

private consumption good deflator.

To render the data stationary an HP-filter was used with λ = 7680, as in Almeida and

Félix (2006). At this point, it is important to refer some problems I encountered when dealing

with this issue. I applied different strategies in the attempt of rendering the data stationary,

in particular first-order differentiation and linear detrending. However, due to the highly non-

stationary behaviour of Portuguese data, marked by the economic instability that the country

suffered during a considerable time span, none of these strategies was able to produce ”well-

behaved” series, to use in the estimation. The HP filter was indeed the only methodology (among

the ones I tried) that provided a reasonable treatment of the data. I am however, conscious that

this method suffers from some problems, in particular the well-known end-of-sample bias.
13The data is available at http://www.eabcn.org/data/awm/index.htm.
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The vector of variables used in the estimation can then be described by:

Υ′
t =

[
πd

t πt πi
t wt Ct It gdpt Lt Xt Mt Rt gdp∗t R∗

t

]HP

The correspondent time series are shown in Figure 1.

5.2 Calibration

Being a small open economy in the euro area, Portugal’s steady-state real growth and inflation

were set according to those of the euro area. ζ was set at 1.005, which as referred in Almeida

et al. (2008) corresponds to the euro area’s potential output growth and also seems a plausible

estimate for Portugal in view of the results of Almeida and Félix (2006). π = π̄ = π∗ was set at

1.005, in line with the ECB goal of 2% for the euro area annual inflation rate. Conditional on

these values, and according to the consumption Euler equation in the steady-state, the discount

rate β was then set to 0.999, to produce a steady-state long-run nominal interest rate in line

with that of the euro area, i.e. 4.5% following Christoffel et al. (2008).

Conditional on the value assumed for ζ, and according to the capital accumulation equation

in the steady-state, the depreciation rate was calibrated to match the empirical long-run annual

investment to capital ratio of 8%, implying δ = 0.014, i.e. an annual depreciation rate of

6%. The steady-state government to domestic output ratio, was set to match its empirical

counterpart implying gy = 0.14. The steady-state tax rates were taken from Almeida et al.

(2008), where τ c = 0.304 and τ l = 0.287, and the target debt to GDP ratio,
(

b̈
¨gdp

)tar
, was set at

60%, the upper bound of the limit imposed the Maastricht Treaty criteria. The capital income

share, the quasi-share of import good in composite good, the quasi-share of domestic export

good in foreign good production and the elasticity of substitution between domestic and import

goods were then calibrated to closely follow Almeida et al. (2008) and ensure that the model

key steady-state ratios closely follow the correspondent ratios in the data. This amounted to

αd = 0.323, ωh = 0.32, ω∗ = 0.02 and ϑh = 1.000001.

Besides these, two more parameters were calibrated that ideally would have been estimated,

but for which satisfactory estimates were not obtained. These comprise the domestic good price

markup, for which an unreasonably high markup was obtained, and the elasticity of substitution

between final export good and foreign good, for which a value below one was obtained, which

violates the assumption that this elasticity must be larger than one. µd was set at 1.15 and ϑ∗

at 1.5 following Almeida et al. (2008).
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5.3 Priors

In Table 1 the assumptions concerning the priors are presented.

For the inverse of the elasticity of labour effort, the steady-state markups and the standard

deviations of shocks the inverse gamma distribution was used. For the first one, the prior mean

was set at 2, according to the calibration in Almeida et al. (2008), and the standard deviation

at 0.5, producing a reasonably loose prior. The prior means for the steady-state markups were

mostly based on the calibration in Almeida et al. (2008) being set at 25% in the wages case

and 5% in the final goods case. As for import prices, a markup of 20% was considered, as in

Adolfson, Laséen, Lindé and Villani (2007). The standard deviations for these priors were set at

0.2 for the wages and domestic good price markups, producing reasonably loose priors, and 0.05

for the final goods markups, as a markup lower than one would not make sense. For the shocks

standard deviations, I did not have strong a-priori convictions and therefore priors were set as

harmonised and loose as possible. For most of them, the mean was set at 0.15, a value that fits

into what is usually used in the literature, while for the remaining it was set at a considerably

lower level, 0.02, to ensure the success of the numerical optimisation of the posterior kernel. The

dispersions were all set equal to the means, which produced rather uninformative priors.

The habit persistence parameter, the shocks’ autoregressive parameters, the Calvo and the

indexation parameters were assumed to follow a beta distribution. For the habit parameter,

the prior mean was set at 0.7, according to the calibration in Almeida et al. (2008), and the

standard deviation was set at 0.2. Concerning the autoregressive parameters, for which I had no

strong a-priori information, priors were completely harmonised, with their mean set at 0.6. The

means for the priors of the non-reoptimisation Calvo probability were mostly set according to

the calibration in Almeida et al. (2008), with wages assumed to be readjusted every 6 quarters,

domestic good prices every 4 quarters and final good prices every 2.5 quarters. Import prices

were assumed to adjust every 2 quarters, according to the prior in Adolfson, Laséen, Lindé and

Villani (2007). As for the indexation parameters, all prior means were set at 0.5, in line with

Adolfson, Laséen, Lindé and Villani (2007). The standard deviation of all these parameters was

set at 0.1, which is in line with what is usually assumed in the DSGE literature.

Finally, a normal distribution was considered for the investment adjustment cost parameter,

with prior mean and standard deviation set at 7.69 and 1.5, respectively, as in Adolfson, Laséen,

Lindé and Villani (2007).
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5.4 Results and evaluation

The results for the 63 estimated parameters are presented in Table 1 and the corresponding

posteriors in Figures 3-4. In Table 1, the posterior maximisation columns report the parameters

mode and standard deviation obtained by maximising the posterior kernel. The MH sampling

columns contain the mean and 5th and 95th percentiles of the posterior distributions computed

with the MH algorithm, based on 500000 draws with 5 distinct chains. In the bottom of the table,

the value of the marginal likelihood is presented, computed with both the Laplace approximation

and the Harmonic mean estimator, together with the average acceptance rate in each chain.

Starting with the parameters influencing the steady-state, the estimation for the inverse of

the elasticity of labour confirms a value close to 2, although the posterior seems to be very much

driven by the prior. The habit parameter seems to be slightly higher than the assumed prior

mean, close to 0.8, with the obtained estimate appearing to be highly data driven, indicating a

quite high persistence of Portuguese households’ consumption between periods. In the case of

the markups’ steady-state values, the prior conviction of low markups in the final goods sector

seems to be confirmed by the data, with values between 3% and 6%, indicating a reasonable

degree of competition in these markets. These results seem however to be highly influenced by

the respective priors. The wage and import price markups, on the other hand, are estimated to

be high, 38% and 23% respectively, which is in line with prior conviction of higher markups in

these markets and with the estimates obtained in Adolfson, Laséen, Lindé and Villani (2007).

The low degree of competition in the Portuguese labour market, in particular, is well documented

in Almeida et al. (2008). For both these parameters, results seem to be reasonably data driven,

especially in the case of the wage markup.

Turning to the model’s frictions, the investment adjustment cost parameter is estimated to

be around 10, a value slightly above the ones commonly found in the literature, with the corre-

sponding posterior being reasonably data driven. Considering the Calvo stickiness parameters,

prices in the labour and consumption good markets are estimated to be quite sticky, with average

durations of price contracts close to 1.5 years. The high stickiness of wages is a fairly intuitive

result in the case of the Portuguese economy, where wage negotiations are centralised and per-

formed on a yearly basis. Domestic, investment, government consumption and export goods

prices are estimated to be more flexible, being renegotiated once a year, on average. Import

prices estimates, in turn, point to a high degree of flexibility with renegotiations occurring every

1.5 quarters. The posteriors for all these parameters are quite distinct from the assumed priors,
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indicating that the estimates draw important information from the data. As for the indexation

parameters, results suggest that inflation persistence is the highest for wages, around 59%, and

the lowest for import prices, around 43%. These results compare quite favourably with what is

usually obtained, particularly in the wages case, as it is very frequent that the price of labour

is the most related to past inflation among prices considered in DSGE models. This makes

particular sense for the Portuguese economy, since wage negotiations are very much based on

past inflation figures (though no formal indexation mechanism exists). The comparison between

priors and posteriors for these parameters points to some influence from the data in the results,

but an apparent predominance of the information imposed by the priors.

Finally, consider the persistence and volatility parameters of structural shocks. The autore-

gressive parameters are estimated to lie between 0.35, for the import goods price markup, and

0.89, for the foreign output shock. None of the shocks is excessively persistent, in the sense

that the posterior distribution’s 95th percentile does not exceed 0.93, which gives an indication

on the absence of unit roots in these processes. It is interesting to note that when compared

to Smets and Wouters (2003) (closed economy), the obtained estimates are considerably lower,

while closer to the estimates of Adolfson, Laséen, Lindé and Villani (2007) (open economy).

This seems to be a reasonable feature, since for an open economy there is an extra possibility of

propagation of shocks hitting the economy, and therefore these are likely to be less persistent.

Turning to the estimated standard deviations, it is possible to conclude that the most volatile

shock considered in the model is the investment specific one (0.21), while the least volatile are

the consumption tax rate and the foreign interest rate (0.00). For most of these parameters

results seem to be driven to a reasonable extent by the data.

Looking at the diagnosis concerning the numerical maximisation of the posterior kernel,

overall they indicate that the optimisation procedure was able to obtain a robust maximum

for the posterior kernel. The corresponding graphs can be seen in the Appendix. As for the

MH sampling algorithm, a diagnosis of the overall convergence is provided in Figure 2. The

information is summarised in three graphs, with each graph representing specific convergence

measures and having two distinct lines that represent the results within and between chains.

Those measures are related to the analysis of the parameters mean (interval), variance (m2)

and third moment (m3). Convergence requires that both lines, for each of the three measures,

become relatively constant and converge to each other. Diagnosis for each individual parameter

were also obtained, following the same structure as the overall, being available in the Appendix.

37



Most of the parameters do not seem to exhibit convergence problems, notwithstanding the fact

that for some of them this evidence is stronger than for others.

Figure 5 displays the estimates of the innovation component of each structural shock. These

appear to respect the i.i.d. properties assumed from the beginning and are centered around

zero, which gives some positive indication on the statistical validity of the estimated model.

To assess the sensitivity of the results to the priors, these were changed in several ways and the

model re-estimated for each of them14. Results concerning three particular cases are presented

in Table 3, for illustrative purposes. In Case I, all prior means and standard deviations were

increased by 10%. Comparing the obtained results with those of the benchmark model, in Table

1, we can see that for the majority of the parameters estimates changed but not substantially. In

Case II, the prior means were kept unchanged and the prior standard deviations were increased

substantially, by 50%. Although results exhibit a more substantial change than in Case I, the

overall conclusions remained broadly the same as the ones of the benchmark model. We can

therefore conclude that for reasonable changes in the values of the priors mean and standard

deviation, quantitative results are somewhat sensible but the overall qualitative results are quite

robust. In Case III, a uniform distribution is assumed for the price indexation parameters, which

amounts to considering an uninformative prior. This produces unreasonable values for at least

two parameters, the import and export goods ones, illustrating that, as expected, the shape

provided by the priors in the benchmark model is in fact crucial for the results.

Turning now to the assessment of the fit of the model, the one step ahead Kalman filter

estimates are presented in Figure 1, for each of the thirteen variables used in the estimation,

together with the actual data. As can be seen, the obtained estimates are quite close to the true

data, indicating that the overall absolute fit of the model is satisfactory.

In addition, a set of unconditional moments were considered computed for the actual data

and for artificial time series generated from the estimated model, namely the: standard devia-

tion, autocorrelation coefficients and cross-(contemporary) correlation coefficients. Results are

presented in Table 3. In general, the model seems to produce time series with higher volatility

than the actual data, which may be related to the fact that, contrary to the observed data, the

estimated data has not been hp-filtered. Concerning the autocorrelation coefficients, the model

seems to do a good job in capturing the data features for the first 3 lags and to a lesser extent
14For this purpose, I did not use the MH sampling mechanism since the focus was mainly the comparison

between point estimates and not the entire posterior distributions. Therefore, estimates only concern the results
of the posterior kernel maximisation and the corresponding Laplace approximation to the marginal likelihood.
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for the 4th and 5th lags. As for the cross correlation coefficients, the quality of the results is

mixed, with the model having some difficulties in capturing all the data features correctly.

Furthermore, the fit of the benchmark model relative to alternative specifications was ex-

plored. Results concerning two particular cases are presented in Table 4, for illustrative purposes.

In Case IV, the persistence coefficients of the markup shocks were calibrated to be zero, an as-

sumption relatively common in the DSGE literature. In Case V, the relevance of indexation to

past inflation in pricing decisions was tested, by calibrating all the indexation parameters to be

zero. In both cases, the diagnosis concerning the posterior kernel maximisation deteriorated,

indicating that the imposed restrictions spurred identification problems. Furthermore, in Case

IV, the standard deviations of the markup shocks increased substantially reaching values that

appear to be less reasonable in light of what is usual in the literature. Computing the poste-

rior odds ratio for both models relative to the benchmark model, smaller than one figures were

obtained, indicating that the latest is more likely than the formers15.

Additionally, a variance decomposition was performed to make a formal assessment of the

contribution of each structural shock to fluctuations in the endogenous variables, which is pre-

sented in Table 5 for the main endogenous variables of the model. The most crucial shock,

that motivates important fluctuations in most variables, is the unit root technology shock, ac-

counting for more than 70% of developments in capital, consumption, investment, wages and

the rental rate of capital. Crucial in explaining inflation developments are the markup shocks,

the inflation target shock, and the foreign inflation shock, which together account for more than

70% of the variation in all inflation rates. Finally, the asymmetric technology shock seems to

be also relevant, particularly in explaining trade developments.

Finally, the IRFs to the model’s shocks were inspectioned, considering shocks of one stan-

dard deviation. For all the 20 shocks variables returned to their steady-state value, reinforcing

the conclusion given by the Blanchard-Kahn and rank conditions that the model is stable. Fur-

thermore, in general, results seem to make sense from an economic point of view. The IRFs

for all the shocks are given in the Appendix. For illustration purposes, the IRFs for a positive

stationary productivity shock are presented in Figure 6. Higher productivity leads to lower

marginal costs in the production of domestic goods, which implies smaller domestic good infla-

tion and consequently a decrease in the relative price of domestic good. This lowers the price

of composite good, which translates into smaller final good inflation and consequently lower
15For the computation of all posterior odds ratios, the prior odds ratio was considered to be one.
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relative prices of final goods. This induces an increase in the relative price of foreign and import

goods and an exchange rate depreciation, which generates higher demand for export goods. The

decrease in the relative price of domestic good and increase in the relative price of import good

decreases imports. Higher exports and lower imports has a positive impact on the economy’s net

foreign asset position, which decreases the domestic interest rate. This increases the value of the

capital stock, stimulating capital accumulation. Furthermore, the decrease in investment good

price stimulates investment, also contributing for a more intensive capital accumulation. Higher

capital supply decreases its rental rate. The decrease in the domestic interest rate also stimu-

lates private consumption, decreasing the marginal utility of consumption, and lowers savings

in domestic bonds, turning them less attractive relative to foreign bonds. The higher demand

for consumption, investment and export goods is matched by an increase in production, and

consequent increase in capital and labour demand. However, the decrease in inflation leads to

a higher real wage, which has a negative effect over labour demand that more than offsets the

increase via stronger production. After the initial impact, the increase in wages puts pressure on

marginal costs and consequently on inflation, which leads to a reversion of some of the previous

effects (like a decrease in investment) and intensification of others (like a further decrease in the

real interest rate). Overall, the shock has an expansionary effect in the economy, producing a

rise in real GDP. As the temporary shock begins to vanish its effects over the economy decrease,

with all variables returning to the steady-state after twenty years.

6 Conclusions and directions for further work

In this study, a New-Keynesian DSGE model for a small open economy integrated in a monetary

union was developed and estimated for the Portuguese economy using a Bayesian approach. The

results were analysed using several techniques, which overall indicated that the estimated model

has both statistical and economic plausible properties. In addition, a survey on the main events

and literature associated with DSGE models was provided, as well as a comprehensive discussion

of the Bayesian estimation and model comparison techniques applied.

The obtained estimates for the parameters of interest are generally in line with the DSGE

literature and previous studies for Portugal. Among them, some are particularly noteworthy.

Firstly, the finding of high markups in the import goods and labour markets, indicating a low

degree of competition in these markets, which is in line with the estimates obtained in Adolf-

son, Laséen, Lindé and Villani (2007) (for the import good price markup) and the calibration
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in Almeida et al. (2008) (for the wage markup), where the low degree of competition in the

Portuguese labour market is well documented. Secondly, wages are estimated to be the stickier

prices and import good prices the more flexible, a result commonly found in the literature. The

high stickiness of wages, in particular, is a fairly intuitive result for the Portuguese economy,

where wage negotiations are centralised and performed on a yearly basis. Thirdly, all prices

exhibit a considerable degree of indexation to past inflation, particulary wages, a result that

seems to make sense for the Portuguese labour market, since wage negotiations usually rely

heavily on past inflation developments.

Some problems were however encountered, which should be mentioned. In particular, the

treatment of the data was a far from trivial task, leading to the use of hp-filtered data, which is

recognised to be subject to caveats. Also, despite the overall quality of the diagnostic measures,

this was not an homogeneous result, indicating that some identification problems may exist,

which is in fact a common problem in the estimation of medium-large scale DSGE models.

Furthermore, although the data was informative in the majority of the cases, some estimates

seemed to be quite influenced by the chosen priors, an influence that ideally should be as small

as possible. Finally, the estimation produced unreasonable results for two parameters, which

consequently had to be calibrated.

The existence of these caveats indicates that this work can be improved in some dimensions.

In particular, a more profound data analysis should be performed and the estimation should

be carried out with unfiltered data. Furthermore, the fiscal and foreign variables of the model

could be modelled outside the model, like in Adolfson, Laséen, Lindé and Villani (2007), which

would allow for a more realistic treatment of these variables and a considerably reduction of

the ”estimation burden” imposed on the current model. Finally, a more comprehensive analysis

of the model’s properties could be performed by considering other benchmark models such as

VARs or further exploring the model’s applications, in particular forecasting exercises.
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Tables
Table 1: Estimation results

Parameters Prior Posterior Metropolis-Hastings
maximisation sampling

Type Mean Stdev Mode Stdev Mean Mode 5% 95%

σl invg 2.00 0.50 1.81 0.39 2.05 1.81 1.29 2.78
h beta 0.70 0.20 0.79 0.04 0.78 0.79 0.72 0.84
µw invg 1.25 0.20 1.38 0.11 1.38 1.38 1.21 1.56
µm invg 1.20 0.20 1.23 0.20 1.34 1.23 0.96 1.71
µc invg 1.05 0.05 1.06 0.10 1.08 1.06 0.91 1.24
µi invg 1.05 0.05 1.02 0.09 1.05 1.02 0.89 1.20
µg invg 1.05 0.05 1.01 0.09 1.04 1.01 0.89 1.19
µx invg 1.05 0.05 1.03 0.09 1.06 1.03 0.90 1.22
S norm 7.69 1.50 9.73 1.27 9.89 9.73 7.83 11.98
ξw beta 0.83 0.10 0.86 0.03 0.83 0.86 0.78 0.89
ξd beta 0.75 0.10 0.74 0.04 0.75 0.74 0.69 0.82
ξm beta 0.50 0.10 0.30 0.06 0.30 0.30 0.21 0.40
ξc beta 0.60 0.10 0.84 0.02 0.84 0.84 0.80 0.88
ξi beta 0.60 0.10 0.73 0.04 0.74 0.73 0.68 0.80
ξg beta 0.60 0.10 0.74 0.06 0.73 0.74 0.64 0.83
ξx beta 0.60 0.10 0.73 0.05 0.73 0.73 0.66 0.81
κw beta 0.50 0.10 0.59 0.06 0.61 0.59 0.51 0.71
κd beta 0.50 0.10 0.47 0.08 0.47 0.47 0.33 0.61
κm beta 0.50 0.10 0.43 0.10 0.44 0.43 0.28 0.60
κc beta 0.50 0.10 0.47 0.07 0.48 0.47 0.36 0.60
κi beta 0.50 0.10 0.48 0.09 0.48 0.48 0.34 0.63
κg beta 0.50 0.10 0.52 0.10 0.53 0.52 0.37 0.68
κx beta 0.50 0.10 0.54 0.11 0.53 0.54 0.36 0.69
ρεi beta 0.60 0.10 0.39 0.08 0.39 0.39 0.27 0.52
ρεc beta 0.60 0.10 0.61 0.10 0.59 0.61 0.43 0.74
ρεφ beta 0.60 0.10 0.75 0.07 0.73 0.75 0.61 0.85
ρεa beta 0.60 0.10 0.59 0.10 0.60 0.59 0.44 0.76
ρεl beta 0.60 0.10 0.62 0.11 0.62 0.62 0.47 0.78
ρµd beta 0.60 0.10 0.66 0.07 0.62 0.66 0.50 0.75
ρµc beta 0.60 0.10 0.59 0.08 0.59 0.59 0.46 0.72
ρµi beta 0.60 0.10 0.60 0.07 0.58 0.60 0.46 0.71
ρµg beta 0.60 0.10 0.78 0.06 0.75 0.78 0.64 0.86
ρµx beta 0.60 0.10 0.62 0.08 0.60 0.62 0.48 0.73
ρµm beta 0.60 0.10 0.35 0.07 0.35 0.35 0.23 0.46
ρζ beta 0.60 0.10 0.53 0.08 0.52 0.53 0.38 0.65
ρζ∗ beta 0.60 0.10 0.87 0.03 0.86 0.87 0.81 0.91
ρτ l beta 0.60 0.10 0.67 0.08 0.63 0.67 0.48 0.77
ρτc beta 0.60 0.10 0.74 0.08 0.72 0.74 0.59 0.85
ρg beta 0.60 0.10 0.68 0.12 0.69 0.68 0.52 0.87
ρπ∗ beta 0.60 0.10 0.69 0.09 0.69 0.69 0.55 0.82
ρy∗ beta 0.60 0.10 0.89 0.03 0.88 0.89 0.84 0.93
ρr∗ beta 0.60 0.10 0.83 0.04 0.82 0.83 0.76 0.89
ρπ̄ beta 0.60 0.10 0.66 0.08 0.64 0.66 0.52 0.77
σ

ηεi invg 0.15 0.15 0.21 0.03 0.21 0.21 0.15 0.27
σηεc invg 0.15 0.15 0.04 0.01 0.05 0.04 0.03 0.06
σ

ηεφ invg 0.02 0.02 0.01 0.00 0.01 0.01 0.01 0.01
σηεa invg 0.02 0.02 0.01 0.00 0.01 0.01 0.01 0.01
σ

ηεl invg 0.15 0.15 0.09 0.04 0.16 0.09 0.05 0.28
σ

ηµd invg 0.15 0.15 0.08 0.02 0.09 0.08 0.05 0.13
σηµc invg 0.15 0.15 0.06 0.01 0.07 0.06 0.04 0.10
σ

ηµi invg 0.15 0.15 0.09 0.02 0.11 0.09 0.06 0.15
σηµg invg 0.15 0.15 0.12 0.04 0.15 0.12 0.07 0.22
σηµx invg 0.15 0.15 0.07 0.02 0.09 0.07 0.05 0.13
σηµm invg 0.15 0.15 0.06 0.01 0.07 0.06 0.05 0.09
σηζ invg 0.15 0.15 0.03 0.00 0.03 0.03 0.02 0.03
σηζ∗ invg 0.15 0.15 0.03 0.00 0.03 0.03 0.02 0.03
σ

ητl invg 0.15 0.15 0.13 0.06 0.15 0.13 0.05 0.24
σητc invg 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00
σηg invg 0.02 0.02 0.01 0.00 0.01 0.01 0.00 0.01
σηπ∗ invg 0.02 0.02 0.01 0.00 0.01 0.01 0.01 0.01
σηy∗ invg 0.02 0.02 0.08 0.01 0.09 0.08 0.07 0.10
σηr∗ invg 0.02 0.02 0.01 0.00 0.01 0.00 0.00 0.01
σηπ̄ invg 0.02 0.02 0.01 0.00 0.01 0.01 0.01 0.01

Marginal likelihood (Laplace) 3266
Marginal likelihood (Harmonic mean) 3267
Average acceptance rate per chain 0.31 0.31 0.31 0.31 0.31
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Table 2: Sensitivity analysis

Case I Case II Case III
Parameters Prior Posterior Prior Posterior Prior Posterior

maximisation maximisation maximisation
Type Mean Stdev Mode Stdev Type Mean Stdev Mode Stdev Type Mean Stdev Mode Stdev

σl invg 2.20 0.55 1.92 0.40 invg 2.00 0.75 1.71 0.52 invg 2.00 0.50 1.75 0.36
h beta 0.77 0.22 0.79 0.04 beta 0.70 0.30 0.80 0.04 beta 0.70 0.20 0.79 0.04
µw invg 1.38 0.22 1.37 0.10 invg 1.25 0.30 1.42 0.14 invg 1.25 0.20 1.33 0.10
µm invg 1.32 0.22 1.35 0.22 invg 1.20 0.30 1.22 0.25 invg 1.20 0.20 1.20 0.19
µc invg 1.16 0.06 1.16 0.11 invg 1.05 0.08 1.04 0.12 invg 1.05 0.05 1.09 0.20
µi invg 1.16 0.06 1.12 0.10 invg 1.05 0.08 1.00 0.11 invg 1.05 0.05 1.02 0.09
µg invg 1.16 0.06 1.11 0.10 invg 1.05 0.08 1.00 0.11 invg 1.05 0.05 1.01 0.09
µx invg 1.16 0.06 1.14 0.10 invg 1.05 0.08 1.02 0.11 invg 1.05 0.05 1.03 0.09
S norm 8.46 1.65 10.72 1.39 norm 7.69 2.25 10.47 1.75 norm 7.69 1.50 9.73 1.28
ξw beta 0.91 0.11 0.86 0.03 beta 0.83 0.15 0.85 0.05 beta 0.83 0.10 0.88 0.02
ξd beta 0.83 0.11 0.75 0.04 beta 0.75 0.15 0.74 0.05 beta 0.75 0.10 0.74 0.04
ξm beta 0.55 0.11 0.30 0.06 beta 0.50 0.15 0.28 0.08 beta 0.50 0.10 0.39 0.07
ξc beta 0.66 0.11 0.85 0.02 beta 0.60 0.15 0.86 0.03 beta 0.60 0.10 0.84 0.03
ξi beta 0.66 0.11 0.74 0.04 beta 0.60 0.15 0.75 0.04 beta 0.60 0.10 0.74 0.04
ξg beta 0.66 0.11 0.76 0.06 beta 0.60 0.15 0.75 0.08 beta 0.60 0.10 0.73 0.06
ξx beta 0.66 0.11 0.75 0.05 beta 0.60 0.15 0.73 0.05 beta 0.60 0.10 0.74 0.05
κw beta 0.55 0.11 0.62 0.06 beta 0.50 0.15 0.62 0.07 unif 0.61 0.08
κd beta 0.55 0.11 0.49 0.09 beta 0.50 0.15 0.41 0.11 unif 0.44 0.15
κm beta 0.55 0.11 0.47 0.12 beta 0.50 0.15 0.42 0.17 unif -0.14 0.20
κc beta 0.55 0.11 0.50 0.07 beta 0.50 0.15 0.46 0.09 unif 0.45 0.12
κi beta 0.55 0.11 0.50 0.10 beta 0.50 0.15 0.44 0.14 unif 0.40 0.19
κg beta 0.55 0.11 0.57 0.11 beta 0.50 0.15 0.54 0.15 unif 0.51 0.29
κx beta 0.55 0.11 0.58 0.12 beta 0.50 0.15 0.52 0.18 unif 0.98 0.27
ρεi beta 0.66 0.11 0.38 0.08 beta 0.60 0.15 0.27 0.09 beta 0.60 0.10 0.39 0.08
ρεc beta 0.66 0.11 0.64 0.11 beta 0.60 0.15 0.59 0.15 beta 0.60 0.10 0.62 0.09
ρεφ beta 0.66 0.11 0.81 0.07 beta 0.60 0.15 0.83 0.07 beta 0.60 0.10 0.74 0.08
ρεa beta 0.66 0.11 0.65 0.11 beta 0.60 0.15 0.56 0.16 beta 0.60 0.10 0.59 0.10
ρεl beta 0.66 0.11 0.69 0.11 beta 0.60 0.15 0.65 0.17 beta 0.60 0.10 0.62 0.11
ρµd beta 0.66 0.11 0.65 0.08 beta 0.60 0.15 0.68 0.09 beta 0.60 0.10 0.66 0.07
ρµc beta 0.66 0.11 0.61 0.08 beta 0.60 0.15 0.61 0.11 beta 0.60 0.10 0.58 0.08
ρµi beta 0.66 0.11 0.61 0.08 beta 0.60 0.15 0.60 0.10 beta 0.60 0.10 0.62 0.08
ρµg beta 0.66 0.11 0.81 0.06 beta 0.60 0.15 0.80 0.07 beta 0.60 0.10 0.77 0.06
ρµx beta 0.66 0.11 0.65 0.08 beta 0.60 0.15 0.62 0.10 beta 0.60 0.10 0.58 0.09
ρµm beta 0.66 0.11 0.34 0.08 beta 0.60 0.15 0.27 0.10 beta 0.60 0.10 0.40 0.07
ρζ beta 0.66 0.11 0.56 0.09 beta 0.60 0.15 0.49 0.11 beta 0.60 0.10 0.53 0.08
ρζ∗ beta 0.66 0.11 0.89 0.03 beta 0.60 0.15 0.91 0.03 beta 0.60 0.10 0.86 0.03
ρτ l beta 0.66 0.11 0.71 0.08 beta 0.60 0.15 0.70 0.09 beta 0.60 0.10 0.68 0.08
ρτc beta 0.66 0.11 0.81 0.07 beta 0.60 0.15 0.83 0.09 beta 0.60 0.10 0.74 0.08
ρg beta 0.66 0.11 0.80 0.13 beta 0.60 0.15 0.90 0.06 beta 0.60 0.10 0.68 0.11
ρπ∗ beta 0.66 0.11 0.74 0.09 beta 0.60 0.15 0.79 0.10 beta 0.60 0.10 0.68 0.09
ρy∗ beta 0.66 0.11 0.90 0.03 beta 0.60 0.15 0.92 0.03 beta 0.60 0.10 0.89 0.03
ρr∗ beta 0.66 0.11 0.86 0.04 beta 0.60 0.15 0.87 0.04 beta 0.60 0.10 0.83 0.04
ρπ̄ beta 0.66 0.11 0.67 0.08 beta 0.60 0.15 0.66 0.10 beta 0.60 0.10 0.67 0.07
σ

ηεi invg 0.17 0.17 0.23 0.04 invg 0.15 0.23 0.24 0.04 invg 0.15 0.15 0.21 0.03
σηεc invg 0.17 0.17 0.05 0.01 invg 0.15 0.23 0.04 0.01 invg 0.15 0.15 0.04 0.01
σ

ηεφ invg 0.02 0.02 0.01 0.00 invg 0.02 0.03 0.01 0.00 invg 0.02 0.02 0.01 0.00
σηεa invg 0.02 0.02 0.01 0.00 invg 0.02 0.03 0.01 0.00 invg 0.02 0.02 0.01 0.00
σ

ηεl invg 0.17 0.17 0.10 0.04 invg 0.15 0.23 0.08 0.04 invg 0.15 0.15 0.09 0.04
σ

ηµd invg 0.17 0.17 0.08 0.02 invg 0.15 0.23 0.07 0.02 invg 0.15 0.15 0.08 0.02
σηµc invg 0.17 0.17 0.07 0.02 invg 0.15 0.23 0.06 0.02 invg 0.15 0.15 0.06 0.01
σ

ηµi invg 0.17 0.17 0.10 0.03 invg 0.15 0.23 0.10 0.03 invg 0.15 0.15 0.09 0.02
σηµg invg 0.17 0.17 0.12 0.04 invg 0.15 0.23 0.10 0.04 invg 0.15 0.15 0.12 0.04
σηµx invg 0.17 0.17 0.08 0.02 invg 0.15 0.23 0.07 0.02 invg 0.15 0.15 0.08 0.02
σηµm invg 0.17 0.17 0.07 0.01 invg 0.15 0.23 0.06 0.01 invg 0.15 0.15 0.07 0.01
σηζ invg 0.17 0.17 0.03 0.00 invg 0.15 0.23 0.02 0.00 invg 0.15 0.15 0.03 0.00
σηζ∗ invg 0.17 0.17 0.03 0.00 invg 0.15 0.23 0.03 0.00 invg 0.15 0.15 0.03 0.00
σ

ητl invg 0.17 0.17 0.12 0.05 invg 0.15 0.23 0.14 0.06 invg 0.15 0.15 0.15 0.08
σητc invg 0.02 0.02 0.00 0.00 invg 0.02 0.03 0.00 0.00 invg 0.02 0.02 0.00 0.00
σηg invg 0.02 0.02 0.01 0.00 invg 0.02 0.03 0.01 0.00 invg 0.02 0.02 0.01 0.00
σηπ∗ invg 0.02 0.02 0.01 0.00 invg 0.02 0.03 0.01 0.00 invg 0.02 0.02 0.01 0.00
σηy∗ invg 0.02 0.02 0.08 0.01 invg 0.02 0.03 0.08 0.01 invg 0.02 0.02 0.08 0.01
σηr∗ invg 0.02 0.02 0.01 0.00 invg 0.02 0.03 0.00 0.00 invg 0.02 0.02 0.01 0.00
σηπ̄ invg 0.02 0.02 0.01 0.00 invg 0.02 0.03 0.01 0.00 invg 0.02 0.02 0.01 0.00

Marginal likelihood 3264 3300 3151
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Table 3: Unconditional moments
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Table 4: Model comparison

Case IV Case V
Parameters Prior Posterior kernel Prior Posterior kernel

maximisation maximisation
Type Mean Stdev Mode Stdev Type Mean Stdev Mode Stdev

σl invg 2.00 0.50 1.81 0.39 invg 2.00 0.50 1.81 0.39
h beta 0.70 0.20 0.76 0.04 beta 0.70 0.20 0.79 0.04
µw invg 1.25 0.20 1.43 0.13 invg 1.25 0.20 1.36 0.13
µm invg 1.20 0.20 1.15 0.18 invg 1.20 0.20 1.22 0.20
µc invg 1.05 0.05 1.04 0.09 invg 1.05 0.05 1.05 0.10
µi invg 1.05 0.05 1.00 0.09 invg 1.05 0.05 1.02 0.09
µg invg 1.05 0.05 1.00 0.09 invg 1.05 0.05 1.01 0.09
µx invg 1.05 0.05 1.00 0.09 invg 1.05 0.05 1.04 0.09
S norm 7.69 1.50 9.24 1.28 norm 7.69 1.50 9.73 1.29
ξw beta 0.83 0.10 0.86 0.03 beta 0.83 0.10 0.87 0.03
ξd beta 0.75 0.10 0.84 0.03 beta 0.75 0.10 0.78 0.03
ξm beta 0.50 0.10 0.37 0.06 beta 0.50 0.10 0.37 0.07
ξc beta 0.60 0.10 0.87 0.02 beta 0.60 0.10 0.86 0.02
ξi beta 0.60 0.10 0.84 0.02 beta 0.60 0.10 0.76 0.03
ξg beta 0.60 0.10 0.80 0.05 beta 0.60 0.10 0.73 0.06
ξx beta 0.60 0.10 0.73 0.04 beta 0.60 0.10 0.72 0.04
κw beta 0.50 0.10 0.65 0.05 - - - - -
κd beta 0.50 0.10 0.68 0.06 - - - - -
κm beta 0.50 0.10 0.48 0.10 - - - - -
κc beta 0.50 0.10 0.46 0.07 - - - - -
κi beta 0.50 0.10 0.68 0.07 - - - - -
κg beta 0.50 0.10 0.62 0.09 - - - - -
κx beta 0.50 0.10 0.65 0.09 - - - - -
ρεi beta 0.60 0.10 0.37 0.08 beta 0.60 0.10 0.40 0.08
ρεc beta 0.60 0.10 0.58 0.10 beta 0.50 0.10 0.64 0.09
ρεφ beta 0.60 0.10 0.77 0.06 beta 0.50 0.10 0.75 0.07
ρεa beta 0.60 0.10 0.60 0.10 beta 0.50 0.10 0.60 0.10
ρεl beta 0.60 0.10 0.62 0.11 beta 0.50 0.10 0.63 0.11
ρµd - - - - - beta 0.50 0.10 0.72 0.05
ρµc - - - - - beta 0.50 0.10 0.59 0.08
ρµi - - - - - beta 0.50 0.10 0.70 0.05
ρµg - - - - - beta 0.60 0.10 0.80 0.05
ρµx - - - - - beta 0.60 0.10 0.67 0.07
ρµm - - - - - beta 0.60 0.10 0.37 0.07
ρζ beta 0.60 0.10 0.56 0.08 beta 0.60 0.10 0.51 0.08
ρζ∗ beta 0.60 0.10 0.89 0.03 beta 0.60 0.10 0.88 0.03
ρτ l beta 0.60 0.10 0.69 0.07 beta 0.60 0.10 0.68 0.09
ρτc beta 0.60 0.10 0.75 0.08 beta 0.60 0.10 0.73 0.08
ρg beta 0.60 0.10 0.88 0.04 beta 0.60 0.10 0.68 0.11
ρπ∗ beta 0.60 0.10 0.72 0.07 beta 0.60 0.10 0.67 0.09
ρy∗ beta 0.60 0.10 0.89 0.03 beta 0.60 0.10 0.89 0.03
ρr∗ beta 0.60 0.10 0.83 0.04 beta 0.60 0.10 0.83 0.04
ρπ̄ beta 0.60 0.10 0.63 0.07 beta 0.60 0.10 0.76 0.06
σ

ηεi invg 0.15 0.15 0.20 0.03 beta 0.60 0.10 0.21 0.03
σηεc invg 0.15 0.15 0.04 0.01 beta 0.60 0.10 0.04 0.01
σ

ηεφ invg 0.02 0.02 0.01 0.00 beta 0.60 0.10 0.01 0.00
σηεa invg 0.02 0.02 0.01 0.00 beta 0.60 0.10 0.01 0.00
σ

ηεl invg 0.15 0.15 0.09 0.04 beta 0.60 0.10 0.09 0.04
σ

ηµd invg 0.15 0.15 0.33 0.10 beta 0.60 0.10 0.08 0.02
σηµc invg 0.15 0.15 0.07 0.02 beta 0.60 0.10 0.06 0.01
σ

ηµi invg 0.15 0.15 0.41 0.12 beta 0.60 0.10 0.09 0.02
σηµg invg 0.15 0.15 0.57 0.28 invg 0.15 0.15 0.12 0.04
σηµx invg 0.15 0.15 0.17 0.05 invg 0.15 0.15 0.07 0.02
σηµm invg 0.15 0.15 0.08 0.02 invg 0.02 0.02 0.06 0.01
σηζ invg 0.15 0.15 0.03 0.00 invg 0.02 0.02 0.03 0.00
σηζ∗ invg 0.15 0.15 0.03 0.00 invg 0.15 0.15 0.03 0.00
σ

ητl invg 0.15 0.15 0.14 0.05 invg 0.15 0.15 0.12 0.06
σητc invg 0.02 0.02 0.00 0.00 invg 0.15 0.15 0.00 0.00
σηg invg 0.02 0.02 0.01 0.00 invg 0.15 0.15 0.01 0.00
σηπ∗ invg 0.02 0.02 0.01 0.00 invg 0.15 0.15 0.01 0.00
σηy∗ invg 0.02 0.02 0.08 0.01 invg 0.15 0.15 0.08 0.01
σηr∗ invg 0.02 0.02 0.01 0.00 invg 0.15 0.15 0.01 0.00
σηπ̄ invg 0.02 0.02 0.01 0.00 invg 0.15 0.15 0.01 0.00

Marginal likelihood 3244 3245
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Table 5: Variance decomposition
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Figures

Figure 1: Observed and filtered data
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Figure 2: Multivariate MH convergence diagnosis
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Figure 3: Priors and posteriors
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Figure 4: Priors and posteriors (cont.)
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Figure 5: Estimated shocks
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Figure 6: Impulse responses to a positive productivity shock
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