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Abstract

This paper improves the accuracy and speed of particle �ltering for non-linear DSGE

models with potentially non-normal shocks. This is done by introducing a new proposal

distribution which i) incorporates information from new observables and ii) has a small

optimization step that minimizes the distance to the optimal proposal distribution. A particle

�lter with this proposal distribution is shown to deliver a high level of accuracy even with

relatively few particles, and this �lter is therefore much more e¢ cient than the standard

particle �lter.
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1 Introduction

Likelihood based inference has long been a standard method for taking linearized DSGE models

to the data (see the references in Fernández-Villaverde & Rubio-Ramírez (2005)). The fascinat-

ing work by Fernández-Villaverde & Rubio-Ramírez (2007) shows how to do likelihood based

inference for non-linear DSGE modes with potentially non-normal shocks. They use a particle

�lter to approximate the log-likelihood function and the conditional state distributions through

repeated use of importance sampling and resampling. We will refer to the particle �lter used by

Fernándes-Villaverde and Rubio-Ramirez (2005b, 2007a) as the standard Particle Filter (PF).

This �lter has subsequentially been successfully applied by An (2005), Strid (2006), Doh (2007),

and An & Schorfheide (2007) to non-linear DSGE models.

It is well-known that the standard PF su¤ers from the so-called "sample depletion problem",

which means that few particles get a positive weight in the importance sampling step of the �lter

and this leads to inaccuracy. The sample depletion problem arises because the state transition

distribution is used as the proposal distribution in the importance sampling step of the standard

PF. This choice of proposal distribution is clearly sub-optimal because information from new

observables is omitted. One way to reduce this problem is to increase the number of particles,

but a great deal of inaccuracy may still remain. Moreover, this attempted solution comes at

the cost of increasing the computational requirements which are already severe when using the

standard PF to estimate non-linear DSGE models.

The purpose of this paper is to improve the accuracy and speed of particle �ltering for non-

linear DSGE models. We suggest introducing a new and more e¢ cient proposal distribution

which is constructed from two elements. The �rst being output from a non-linear deterministic

�lter which provides a preliminary estimate of the �rst and second moments in the posterior

state distribution, given the previous state distribution and new observables. These estimates

are then used to form a Gaussian proposal distribution which therefore contains information

from new observables.

The second element is a free parameter that scales the �rst estimate of the covariance matrix
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in the proposal distribution. This parameter allows us to increase the variance of the proposal

distribution to account for fat tails and other deviations from normality in the posterior state

distribution. We introduce the novel idea to determine the value of this parameter by minimizing

the distance between our proposal distribution and the optimal proposal distribution. We show

how to implement this optimization step in a very fast manner, and we provide evidence that the

optimization step greatly improves the performance of the proposal distribution. The particle

�lter with the resulting new proposal distribution is therefore referred to as the Optimized

Particle Filter (OPF).

A Monte Carlo study tests the performance of the OPF on a standard New Keynesian DSGE

model approximated up to second order. We highlight the following results. Firstly, our new

proposal distribution is shown to be a good approximation of the unknown state distribution,

and this leads to much lower Monte Carlo variation in the estimated log-likelihood function than

in the standard PF. Secondly, the OPF is 3 to 105 times more e¢ cient than the standard PF

when we account for di¤erences in accuracy and computing time of the two �lters. We also show

that the OPF outperforms the Sigma Point Particle Filter by Merwe, Doucet, de Freitas & Wan

(2000) with even higher e¢ ciency gains. Finally, the OPF has a low Monte Carlo variation in

the log-likelihood function with relative few particles. This result is robust to the presence of

small measurement errors and non-normal shocks to the economy. As a result, the OPF greatly

facilitates likelihood inference when taking non-linear DSGE models to the data.

The rest of the paper is organized as follows. We present the state space representation of

DSGE models in section 2. Particle �lters are discussed in section 3, where we describe the

standard PF and derive the new OPF. Section 4 sets up a DSGE model which is calibrated

to account for higher order moments in the post-war US economy. The performance of the

various �lters are then examined in a Monte Carlo study in section 5. Concluding comments

are provided in section 6.
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2 The state space representation of DSGE models

We consider the class of economic models which can be represented in a dynamic state space

system (see for instance Thomas F. Cooley (1995) and Schmitt-Grohé & Uribe (2004) for a

number of illustrations). The set of observables in period t is denoted by the vector yt which

has dimension ny � 1. These observables are a function of the state vector xt and a random

vector vt s IID (0;Rv (t)). We let xt have dimension nx � 1 and vt have dimension nv � 1.

More formally,

yt = g (xt;vt;�) : (1)

The function g (�) is determined by the parameters � 2 � in the economic model and the

equilibrium conditions describing the economy. The equations in (1) are known as the set of

measurement equations. Lagged values of the state vector can be included in these equations

by extending the state vector appropriately as shown in section 5.1.

The law of motion for the state vector is given by

xt = h (xt�1;wt;�) ; (2)

where wt s IID (0;Rw (t)) is a random vector of structural shocks with dimension nw�1. The

equations in (2) are typically referred to as the set of transition equations. Our notation with

one lag in these equations is without loss of generality, because additional lags can be added

to the transition equations by extending the state vector. The state vector is assumed to be

unobserved, but observed state variables can be introduced by letting one or more elements in

g (�) be identity mappings. All the vectors yt, xt, vt, and wt are assumed to have continuous

support.

The state vector in many economic models can often be decomposed as

xt �

264 x1;t
x2;t

375 ; (3)
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where x1;t denotes the endogenous state variables and x2;t are the exogenous state variables,

i.e. the shocks hitting the economy. The dimension of these vectors are nx1 � 1 and nx2 � 1,

respectively, and nx1 + nx2 = nx. This implies that the set of transition equations can be

decomposed as

x1;t = h1 (xt�1;�) (4)

x2;t = h2 (x2;t�1;wt;�) : (5)

We do not impose any speci�c probability distributions on vt or wt. However, independence

between vt and wt is assumed at all leads and lags.

3 Particle �lters

The objective in particle �lters is to recursively estimate the probability distribution of the

unknown state vector x0:t � fx0;x1; :::;xtg given all information at a certain point in time,

y1:t � fy1; :::;ytg. This posterior state distribution is denoted by p (x0:tjy1:t;�), and the un-

known state vector is typically estimated by the mean of the marginal distribution p (xtjy1:t;�).

The probability p (yt+1jy1:t;�) and hence the likelihood function can also be computed from the

posterior state distribution. The recursive estimation of p (x0:tjy1:t;�) is based on the probabil-

ity structure of the state space system in (1) and (2) and sequential use of importance sampling

and resampling.

The outline for the remaining part of this section is as follows. We proceed in section 3.1

by describing the basic algorithm for particle �lters as presented in Doucet, Godsill & Andrieu

(2000). Section 3.2 presents the standard PF as an example of this basic algorithm and we

discuss the advantages and disadvantages of this �lter. A few extensions of the standard PF

are then brie�y discussed in section 3.3 to motivate the construction of the Optimized Particle

Filter (OPF) in section 3.4.

We adopt the standard notation in terms of the state vector xt throughout the presentation.

Hence, to avoid stochastic singularity it is assumed that the dimension of vt is equal to the
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number of observables. At the expense of a more evolved notation, some of the structural

shocks in wt can be used to avoid stochastic singularity, as shown by Fernández-Villaverde &

Rubio-Ramírez (2007).

3.1 The basic algorithm for particle �lters

We require that the two conditional probabilities p (ytjxt;�) and p (xtjxt�1;�) can be evaluated

for all values of xt and yt for t = 1; :::; T .1 Using the well-known result we have

p (ytjxt;�) = p (vt;�)

����det�@g (xt;vt;�)@vt

������1 (6)

p (xtjxt�1;�) = p (wt;�)

����det�@h (xt�1;wt;�)@wt

������1 ; (7)

provided that the Jacobian of g (�) and h (�) exist and their determinants are non-zero. We

henceforth assume that the distributions in (6) and (7) are well-de�ned.

It is straightforward to show that the posterior state distribution has a recursive form given

by

p (x0:t+1jy1:t+1;�) = p (x0:tjy1:t;�)
p (yt+1jxt+1;�) p (xt+1jxt;�)

p (yt+1jy1:t;�)
: (8)

It is in general not possible to calculate p (yt+1jy1:t;�) or sample from p (x0:tjy1:t;�). These

problems can be solved by using importance sampling and the approximation

p (x0:tjy1:t;�) �
PN
i=1w

(i)
t �

�
x0:t � x(i)0:t

�
; (9)

where � (�) denotes the Dirac delta function and
n
x
(i)
0:t

oN
i=1

are random draws from p (x0:tjy1:t;�).

Each element x(i)0:t is referred to as a particle and is assigned the weight w
(i)
t . The proposal

distribution for the importance sampling is denoted � (�) and assumed to be given by

� (x0:t+1jy1:t+1) = � (x0:tjy1:t)� (xt+1jx0:t;y1:t+1) : (10)
1 In the standard PF, it is only required that we can sample from p (xtjxt�1;�). However, DSGE models

are usually speci�ed with a known parameteric distribution for the structural shocks, and this ensures that no
additional assumptions are needed to evaluate p (xtjxt�1;�).
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The structure of � (�) implies that p (x0:t+1jy1:t+1;�) is approximated without modifying past

estimated state values, x0:t. The speci�c functional form of � (�) should be chosen such that its

support includes the posterior state distribution. This proposal distribution gives rise to the

following recursive formula for the importance sampling weights w(i)t+1;

w
(i)
t+1 = w

(i)
t

p
�
yt+1jx(i)t+1;�

�
p
�
x
(i)
t+1

���x(i)t ;��
�
�
x
(i)
t+1

���x(i)0:t;y1:t+1� for i = 1; :::; N: (11)

The normalized importance samplings weights are given by

~w
(i)
t+1 =

w
(i)
t+1PN

i=1w
(i)
t+1

for i = 1; :::; N: (12)

A random sample from p (x0:t+1jy1:t+1;�) is then generated by sampling with replacement fromn
x
(i)
0:t+1

oN
i=1

with probabilities
n
~w
(i)
t

oN
i=1
. This new sample is denoted by

n
x̂
(i)
0:t+1

oN
i=1
, and the

particles in this sample have uniform weights, i.e. w(i)t+1 = 1=N . If this resampling step is omitted,

then the unconditional variance of wt increases over time, and after a few iterations only one

particle will have a non-zero weight. This means that a large number of particles essentially are

removed from the approximation of the posterior state distribution which therefore deteriorates

in precision. The purpose of the resampling step is to mitigate this problem by eliminating

particles that are too far from the true state vector (i.e. particles with low values of ~w(i)t+1) and

multiply particles which are close to the true state vector (i.e. particles with high values of

~w
(i)
t+1).

For any function f (x0:t+1) which is integrable with respect to p (x0:t+1jy1:t+1;�), it holds

that

E [f (x0:t+1)] =
1

N

PN
i=1 f

�
x̂
(i)
0:t+1

�
: (13)

A central limit theorem for this estimator is provided by Berzuini, Best, Gilks & Larizza (1997).2

2Liu & Chen (1998) recommend to do state estimation before the resampling step, i.e. by E [f (x0:t+1)] =PN
i=1 ~!

(i)
t+1f

�
x
(i)
0:t+1

�
, because the resampling step introduces additional random variation in the sample of parti-

cles. However, the estimator in (13) is computationally faster than the one recommended by Liu & Chen (1998),

because 1
N

PN
i=1 f

�
x̂
(i)
0:t+1

�
= 1

N

Pn
i=1Nif

�
~x
(i)
0:t+1

�
where Ni is the number of repetitions of the i0th particle and
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Finally, the contribution to the likelihood function can be estimated by

p (yt+1jy1:t;�) =
PN
i=1w

(i)
t+1: (14)

The choice of proposal distribution is clearly crucial for the performance of particle �lters.

Doucet et al. (2000) show that the following proposal distribution

� (xt+1jx0:t;y1:t+1) = p (xt+1jxt;yt+1;�) (15)

is optimal in the sense that it minimizes the variance of the importance sampling weights given

x0:t and y1:t+1. This proposal distribution is in general intractable and approximations are

therefore needed.

3.2 The standard particle �lter

The standard PF approximates the optimal proposal distribution by the transition distribution

for the states. That is

� (x0:t+1jy1:t+1) = p (xt+1jxt;�) : (16)

This is an obvious choice for the three reasons: i) it is easy to sample from p (xt+1jxt;�),

ii) the probability of xt+1 is conditioned on xt, and iii) the importance sampling weights are

given by w(i)t+1 = w
(i)
t p

�
yt+1jx(i)t+1;�

�
. However, the state transition distribution does not use

information from new observables (i.e. yt+1), and this proposal distribution is therefore said to

be "blind" (Pitt & Shephard (1999)). It is in this sense that the proposal distribution in the

standard PF is sub-optimal.

Omitting information from new observables in the proposal distribution is unfortunate for

two reasons. Firstly, if new observations are very informative about the state vector, valuable

information is not present in the proposal distribution. This situation can occur if small changes

in the state vector generate large changes in the observables, and/or the observables are measuredn
~x
(i)
0:t+1

on
i=1

is the set of di¤erent resampled particles. This latter estimator is faster to compute because n is

must smaller than N .
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with a high signal to noise ratio. Secondly, using a blind proposal distribution makes the

standard PF very sensitive to state outliers, because the posterior state distribution in this case

is centered in the tail of the state transition distribution. Hence, state outliers generate a poor

support overlap between the proposal distribution and the posterior state distribution. The

importance sampling weights in the standard PF may therefore be very unevenly distributed in

such a situation, and as a result many particles are needed to get a satisfying approximation of

p (x0:t+1jy1:t+1;�).

3.3 Two alternatives to the standard particle �lter

There exist numerous alternatives to the standard PF (see Doucet, de Freitas & Gordon (2001)).

Many of these alternatives try to improve the performance of the standard PF by bringing

information from new observables into the proposal distribution. We focus on two alternatives

which do so by using deterministic �lters.

The �rst alternative we consider is that suggested by Doucet et al. (2000) who use the

Extended Kalman Filter (EKF) (Jazwinski (1970)) to generate a Gaussian approximation of the

optimal proposal distribution in (15). This is done by sending each particle through one iteration

in the EKF to generate a new probability distribution, where the mean and the covariance

matrix thus contain information from new observables. The idea is that sampling from these

distributions moves particles to areas of high probability. More formally,

�
�
xt+1jx(i)t ;yt+1

�
= N

�
x̂
EKF;(i)
t+1 ; P̂

EKF;(i)
xx (t+ 1)

�
for i = 1; :::; N: (17)

We use the notation x̂EKF;(i)t+1 to denote the posterior mean in the EKF for particle i, and

P̂
EKF;(i)
xx (t+ 1) to denote the posterior covariance matrix for this state estimate. Using this

proposal distribution in the basic algorithm for particle �lters leads to the Extended Kalman

Particle Filter (EKPF). Doucet et al. (2000) and Merwe et al. (2000) show that the proposal

distribution in (17) gives more precise state estimates compared to state estimates from the

standard PF. The EKPF has recently been used by Amisano & Tristani (2007) in the context
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of non-linear DSGE models.

Two drawbacks are related to (17). Firstly, the EKPF is very time consuming to implement,

because the mean and the covariance matrix in (17) must be calculated for a large number of

particles each time period.3 Secondly, the approximations of the �rst and second moments in

the EKF are only accurate up to �rst and second order, respectively, and the approximations

do not take the probability distribution of the state vector into account.

Merwe et al. (2000) and Merwe & Wan (2003) suggest to solve this second problem by

using the Central Di¤erence Kalman �lter (CDKF) by Norgaard, Poulsen & Ravn (2000) to

calculate more accurate expressions for the mean and the covariance matrix in (17). The CDKF

is an extension of the standard Kalman �lter to non-linear and non-normal state space systems

where the non-linear moments in the �ltering equations are approximated at least up to second

order accuracy by multivariate Stirling interpolations. These interpolations are computed using

a deterministic sampling approach and hence no derivatives are needed in the CDKF.4 As a

result, (17) is replaced by

�
�
xt+1jx(i)t ;yt+1

�
= N

�
x̂
CDKF;(i)
t+1 ; P̂

CDKF;(i)
xx (t+ 1)

�
for i = 1; :::; N (18)

Here, x̂CDKF;(i)t+1 denotes the posterior mean in the CDKF for particle i and P̂CDKF;(i)xx (t+ 1)

denotes the posterior covariance matrix for this state estimate. Using this proposal distribution

in the basic algorithm for particle �lters leads to the Sigma Point Particle Filter (SPPF). In an

application Merwe et al. (2000) show that the SPPF clearly outperforms the EKPF. However,

like the EKPF, the SPPF is very time consuming to compute.

3The resampling implies that some of the particles in
n
x̂
(i)
t

oN
i=1

are identical. Hence, only particles with

di¤erent values need to be send through one iteration in the EKF, and this number of particles is often lower
than N .

4The CDKF uses the same number of function evaluations as in the EKF with numerically computed deriva-
tives.
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3.4 The Optimized Particle Filter

This section suggests a computational less demanding method than the one used in the EKPF

and the SPPF for bringing information from new observables into the proposal distribution. In

doing so, we introduce a third approximation of the optimal proposal distribution in (15). Our

new proposal distribution consists of two components; the �rst relates to the endogenous state

variables and the second to the exogenous state variables.

Starting with the endogenous state variables, we suggest sending the sample of particles with

uniform weights
n
x̂
(i)
0:t

oN
i=1

through the transition function as in the standard PF. This is done

to preserve the singularity of the transition function in the proposal distribution. Hence, the

proposal draws for the endogenous state variables are given by

x
(i)
1;t+1 = h1

�
x̂
(i)
t ;�

�
for i = 1; :::; N: (19)

The second component of our proposal distribution uses information from the CDKF when

generating proposal draws for the exogenous state variables. The basic idea is to use the pos-

terior mean estimate x̂CDKF2;t+1 and the square root of the covariance matrix for this estimate

ŜCDKFx2 (t+ 1) to form a Gaussian proposal distribution. That is, draws for x2;t+1 are generated

by

x
(i)
2;t+1 = x̂

CDKF
2;t+1 + 
t+1Ŝ

CDKF
x2 (t+ 1) �

(i)
t+1 for i = 1; :::; N: (20)

We �rst note that x̂CDKF2;t+1 and ŜCDKFx2 (t+ 1) contain information from new observables and

this should bring the proposal distribution close to the posterior state distribution. Contrary to

the EKPF and SPPF, information from new observables is here incorporated in a very e¢ cient

way because only one iteration of the CDKF is needed in each time period to compute x̂CDKF2;t+1

and ŜCDKFx2 (t+ 1).

The novel feature in (20) is the scalar 
t+1 which is a free parameter. The role of this

parameter is to account for fat tails and other deviations from normality in the posterior state

distribution by increasing the variance of the proposal distribution. We suggest to determine
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the value of 
t+1 by numerically minimizing the variance of the importance sampling weights

in each time period. The optimal proposal distribution p (xt+1jxt;yt+1;�) implies a variance of

zero for these sampling weights, and our choice of 
t+1 can therefore be interpreted as minimiz-

ing the distance between our proposal distribution and the optimal proposal distribution. We

recommend to restrict 
t+1 � 1 when determining 
t+1, because values of 
t+1 less than 1 may

easily lead to the undesirable property of thinner tails in the proposal distribution than in the

posterior state distribution.

It is convenient to express the minimization problem for 
t+1 in terms of the e¤ective sample

size Neff;t+1 in order to evaluate whether the variance in the importance sampling weights is

su¢ ciently low. The e¤ective sample size provides a measure of how many particles e¤ectively

approximate the posterior state distribution and is given by (Arulampalam, Maskell, Gordon &

Clapp (2002))

Neff;t+1 =
N

1 + V ar�
�
wt+1

�

t+1

�� = N

E�

�
wt+1

�

t+1

�2� (21)

where wt+1
�

t+1

�
denotes the importance sampling weight as a function of 
t+1. The standard

estimate of Neff;t+1 is

N̂eff;t+1 =
1PN

i=1

�
~w
�

t+1

�(i)
t+1

�2 ; (22)

where ~w
�

t+1

�(i)
t+1

is the normalized importance sampling weight. For instance, N̂eff;t+1 = 1

if only one particle gets a positive weight in approximating the desired distribution, whereas

N̂eff;t+1 = N in the optimal case where all particles get a positive weight. Hence, minimizing

the variance of the importance sampling weights is equivalent to maximizing the e¤ective sample

size, and we can therefore let


�t+1 = argmax
1PN

i=1

�
~w
�

t+1

�(i)
t+1

�2 (23)

The computational cost of determining 
t+1 through optimization can be greatly reduced by

using only Nopt << N particles in the optimization. We suggest to choose these Nopt particles
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from
n
x̂
(i)
0:t

oN
i=1

by selecting every n�th particle where n � dN=Nopte. That is, the particles at

positions J = f1; 1 + n; 1 + 2n; :::g :5 This implies


�t+1 = argmax
1P

j2J

�
~w
�

t+1

�(j)
t+1

�2 ; (24)

which often is a good approximation to (23). However, if N̂eff;t+1 is considered too low after this

optimization, then we suggest to redo the optimization using all particles in a second attempt

to improve the proposal distribution.

An overview of the OPF is given in Appendix A. Note here that we use
n
x̂
(i)
0:t+1

oN
i=1

to

compute an improved estimate of the mean posterior state estimate which is used in the CDKF.

The estimate of ŜCDKFx (t+ 1) could be improved in a similar way but is omitted because it

requires much additional computation.

Prediction of the observables in the OPF is straightforward, and smoothing can be under-

taken alone the lines suggested by Simon J. Godsill & West (2004). The values for the unknown

structural parameters in the economy � can be estimated by Maximum Likelihood or Bayesian

methods (see Fernández-Villaverde & Rubio-Ramírez (2007), An & Schorfheide (2007) and Flury

& Shephard (2008))

4 A New Keynesian DSGE model

This section presents the DSGE model which we will use in the Monte Carlo study. This model

has the same basic structure as the models in Altig, Christiano, Eichenbaum & Linde (2005),

Christiano, Eichenbaum & Evans (2005), and Smets & Wouters (2007). We use the standard

notation from the macroeconomic literature when presenting our model, and the notation in

this section is therefore unrelated to that used for the �lters in the previous section.

5We use the notation dxe to denote the nearest integer greater than or equal to x 2 R. If N=n 6= Nopt, then
we select the last N=n�Nopt particles as 2; 2 + n; 2 + 2n; :::.
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The households: A representative household has preferences speci�ed by

Ut = Et

1X
l=0

�l

��
ct+l�bxt�1+l

z�t+l

�1��2
(1� ht+l)�2

�1��1
� 1

1��1
;

where ct is consumption and ht is labor supply. The variable z�t is a measure of technological

progress and controls the overall trend in consumption. The parameter b speci�cs external habit

formation in the consumption good ct which is constructed from

ct =

�Z 1

0
c
��1
�

i;t di

� �
��1

:

The habit stock xt evolves according to xt+1 = �xxt + (1� �x) ct:

The �rst constraint on the household is the law of motion for the physical capital stock kt

given by

kt+1 = (1� �) kt + it
�
1� �

2
(
it
it�1

� �i)2
�
:

where it is gross investments. The value of �i is determined such that there are no adjustment

costs along the economy�s balanced growth path.

The second constraint is the household�s real period by period budget constraint

EtDt;t+1x
h
t+1 + ct + (et�t)

�1 it =
xht
�t
+ wtht + �t: (25)

The left hand side of (25) is the household�s total expenditures in period t which consists of

i) state-contingent claims EtDt;t+1xht+1, ii) consumption ct, and iii) investments (et�t)
�1 it.

Changes in et�t are investment speci�c shocks, which evolves as an exogenous AR(1) process

along a deterministic trend, i.e. ln�t+1 = ln�t + ln��;ss and

ln et+1 = �e ln et + �e;t+1:

We let �e;t+1 s IID (0; V ar (�e;t+1)).
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The right hand side of (25) is the household�s total wealth in period t. It consists of: i) pay-

o¤ from state-contingent assets purchased in the previous period xht =�t, ii) real labor income

wtht, and iii) dividends received from �rms �t. Note that �t is the gross in�ation rate.

The �rms: Production is carried out by a continuum of �rms indexed by i 2 [0; 1]. They

supply a di¤erentiable good yi;t to the goods market which is characterized by monopolistic

competition. All �rms have access to the same technology

yi;t =

8><>: k�i;t (atzthi;t)
1�� �  z�t if k�i;t (atzthi;t)

1�� �  z�t > 0

0 else
(26)

where ki;t and hi;t denote physical capital and labor services, respectively. The variable at

represents stationary technology shocks, and we let

ln at+1 = �a ln at + �a;t+1;

where �a;t+1 s IID (0; V ar (�a;t+1)). The variable zt in (26) denotes non-stationary technology

shocks. We let �z;t � zt=zt�1 and assume

ln�z;t+1 = ln�z;ss + �z;t+1;

where �z;t+1 s IID (0; V ar (�z;t+1)). The shocks at and �z;t are mutually independent, and so

are all other shocks in the model. Following Altig et al. (2005), we de�ne z�t � ��=(1��)zt. The

amount of �xed production costs  is set to ensure a steady state pro�t of zero.

All �rms maximize the present value of their nominal dividend payments, denoted di;t:

di;t � Et

1X
l=0

Dt;t+lPt+l�i;t+l;

where Dt;t+l is the stochastic discount factor and the expression for real dividend payments from

the i�th �rm �i;t is given below in (27). The �rms face a number of constraints when maximizing
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di;t. The �rst is related to the good produced by the i�th �rm. The total amount of good i is

allocated to consumption and investments, which implies

yt = ct + (et�t)
�1 it:

The second constraint is the budget restriction which gives rise to the expression for real

dividends from �rm i in period t

�i;t = (Pi;t=Pt) yi;t � rkt ki;t � wthi;t: (27)

The �rst term in (27) denotes the real revenue from sales of the i�th good. The next two terms

in (27) are the �rm�s expenditures on capital services rkt ki;t and payments to workers wthi;t.

The third constraint introduces staggered price adjustments. We make the standard assump-

tion that in each period a fraction � 2 [0; 1[ of randomly selected �rms are not allowed to set

the optimal nominal price of the good they produce. Instead, these �rms set the current prices

equal to the prices in the previous period, i.e. Pi;t = Pi;t�1 for all i 2 [0; 1]

The central bank: We let the central bank determine the gross one period nominal interest

rate Rt according to the rule

ln

�
Rt
Rss

�
= �R ln

�
Rt�1
Rss

�
+ �� ln

�
�t
�ss

�
+ �y ln

�
yt

yssz�t

�
+ �R;t+1;

where �R;t+1 s IID (0; V ar (�R;t+1)).

4.1 The approximated state space representation

The exact solution to our model is given by

yt = g (xt) (28)

xt+1 = h (xt) + �wt+1 (29)
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where yt contains the non-predetermined variables and xt is the predetermined state vector.

Both variables are expressed in deviation from the deterministic steady state. The functions

g (�) and h (�) are unknown, and we therefore approximate them up to second order and apply the

pruning scheme to this approximation (Schmitt-Grohé & Uribe (2004), Kim, Kim, Schaumburg

& Sims (2008)).

Five macro variables are chosen for the Monte Carlo study: i) the quarterly nominal interest

rate, ii) the quarterly in�ation rate, and the quarterly real growth rates in iii) consumption, iv)

investments, and v) output. These series are placed in the vector yobst . We allow for measurement

errors vt in the series for yobst and assume vt s NID (0;Rv) where Rv is a diagonal matrix.

This gives the following state space system

yobst =M1g (xt;�)�M2g (xt�1;�) + vt (30)

xt+1 = h (xt) + �wt+1 (31)

whereM1 andM2 are selection matrices with appropriate dimensions. The presence of xt�1 in

(30) is due to the three growth rates in yobst as shown in Appendix B.

4.2 Model calibration

The model is calibrated to US data from 1956Q4 to 2009Q2 in order to make the Monte Carlo

study as realistic as possible. We focus on matching i) mean values, ii) standard deviations, iii)

skewness, and iv) kurtosis for the �ve series in yobst . All calibrated coe¢ cients are fairly standard

and summarized in Table 1. A comment is in order in relation to the size of the measurement

errors in yobst . We conjecture that the quarterly interest and in�ation rates are measured quite

accurately, and we therefore let these measurement errors have a standard deviation of 10 basis

points. The three growth rates are assumed to be measured less accurately, and we therefore let

measurement errors for these variables have a standard deviation of 20 basis points.

< Table 1 about here >
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All structural shocks are assumed to be normally distributed in our benchmark case. The

empirical and simulated moments are reported in Table 2 which shows that our model is suc-

cessful at matching all mean values and standard deviations. The model also generates sizeable

deviations from normality in the nominal interest rate and the in�ation rate. This is evident from

the values of skewness and kurtosis for these series which are larger than 0 and 3, respectively.

We also consider the case where all structural shocks have a Laplace distribution. This is

a symmetric distribution with thicker tails than the normal distribution. Table 2 shows that

these alternative shocks increase kurtosis for all series and thus bring these moments closer to

the empirical moments.

< Table 2 about here >

5 A Monte Carlo study

This section uses the DSGE model presented above to test the performance of the OPF compared

to the standard PF and the SPPF. We focus on the ability of the three �lters to reduce the

Monte Carlo variation in the log-likelihood function because this is the most important statistic

to consider when estimating non-linear DSGE models using particle �lters.

The outline for this section is as follows. We start in section 5.1 by describing the details

related to the implementation of the Monte Carlo study. Section 5.2 compares the performance

of the OPF to the standard PF and the SPPF for the benchmark case with normally distributed

shocks. Robustness analysis is undertaken in section 5.3 which examines the e¤ects of having

small measurement errors in the observables and Laplace distributed shocks.

5.1 Study design

We deal with the presence of xt�1 in the measurement equations by extending the state vec-

tor to ~xt �
�
x0t x0t�1

�0
. It is unnecessary to evaluate

n
g
�
x
(i)
t�1;�

�oN
i=1

in each time pe-

riod as in Fernández-Villaverde & Rubio-Ramírez (2007) if we store these values and resample
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n
g
�
x
(i)
t ;�

�oN
i=1

along with
n
x
(i)
t

oN
i=1

in the resampling step. The transition equations for ~xt is

264 xt+1
xt

375 =
264 h (xt)

xt

375+
264 �wt+1

0

375 :
For a given number of particles N , the Monte Carlo variability in the log-likelihood function

is estimated from 20 simulated time series i = 1; 2; :::; 20 each with a sample length of T = 200.

For each of these time series, we then run the �lters 100 times using di¤erent draws from

the respective probability distributions to compute the log-likelihood function denoted LNi;j for

j = 1; 2; :::; 100. These 100 evaluations enable us to compute the standard deviation in the

estimated log-likelihood function std
�
LNi
�
for the i0th simulated time series. Averaging across

the 20 simulated time series, we then estimate the Monte Carlo variation in the log-likelihood

by

std
�
LN
�
=
1

20

P20
i=1 std

�
LNi
�
;

where std
�
LN
�
denotes the standard deviation in the estimated log-likelihood function using N

particles. The initial state vector ~x0 is assumed known and we initialize Pxx (t = 0) to 10�6.

The optimization step for 
t in the OPF is implemented by a simple line search algorithm.

We set the number of particles for the optimization to Nopt = min (N=10; 1000). If the e¤ective

sample size after this optimization is below 100, then we redo the optimization using all particles.

The importance sampling weights for the OPF are derived in Appendix C.

Finally, all particle �lters are implemented with systematic resampling as in Fernández-

Villaverde & Rubio-Ramírez (2007).

5.2 The benchmark case with normally distributed shocks

We begin by comparing the performance of the OPF to the standard PF for the benchmark

case with normally distributed shocks. The performance of the OPF when 
t = 1 in all time

periods is also reported to examine the e¤ect of the optimization step. Output from this �lter

is denoted OPF(
 = 1). We study the performance of each �lter along three dimensions: i) the
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Monte Carlo variation in the log-likelihood function, ii) the e¤ective sample size, and iii) the

computing time. We also examine how the performance of the various �lters relate to the number

of shocks driving the economy. This is done by gradually increasing the number of shocks from

one to four. That is, we let
p
V ar (�k;t) = 0; �rst for k = fa; e;Rg, then for k = fe;Rg, k = fRg,

and �nally for k = ?.

The performance of the OPF compared to the SPPF is deferred to section 5.2.2.

< Figure 1 about here >

The �rst chart in the upper left corner of Figure 1 shows the variation in the log-likelihood

function when only one shock drives the economy. This variation is much larger in the standard

PF than in both versions of the OPF. The di¤erence is reduced as the number of particles

increases from 500 to 5,000, but the OPF clearly dominates the performance of the standard PF

for all considered choices of particles. We also note that the OPF(
 = 1) performs just as well

as the OPF when there is one shock to the economy, and this must imply that the optimal value

of 
t is close to 1. An inspection of the time series for 
t across the sample length and across

all 20� 100 = 2000 evaluations of the �lter veri�es this conjecture, because this time series has

a mean value of 1:04 and a standard deviation of 0:02.6

The OPF also dominates the performance of the standard PF when two shocks drives the

economy. This is seen from the upper right corner of Figure 1. We also note that the OPF has

a lower Monte Carlo variation than OPF(
 = 1), meaning that the performance of the OPF is

improved when 
t is optimally determined. The importance of letting 
t vary is also evident

from the time series of 
t which has a mean of 1:25 and a standard deviation of 0:14 when two

shocks drive the economy. It is also interesting to note that the OPF displays a remarkable

low variation in the log-likelihood function with just 1,000 particles. As a result, increasing the

number of particles does not induce a similar large absolute reduction in the variation of the

log-likelihood function as in the standard PF. However, when we measure the gain in accuracy

from more particles in relative terms, that is as std
�
LN=1;000

�
=std

�
LN=10;000

�
, then the OPF

has a relative gain of 2:78 which is similar to the relative gain of 2:97 for the standard PF.
6These numbers vary slightly with the number of particles.
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The same conclusions hold when three and four shocks drive the economy. That is, the

OPF outperforms the standard PF, and optimally determining the value of 
t improves the

performance of the OPF. Again, the OPF has a remarkably low variation in the log-likelihood

function with relative few particles.

< Figure 2 about here >

The only di¤erence between the standard PF and the OPF is the choice of proposal distrib-

ution which therefore explains the improved performance of the OPF. As mentioned in section

3.4, the e¤ective sample size measures the quality of a proposal distribution, and the OPF should

therefore have a larger e¤ective sample size than the standard PF. We examine this hypothesis

by computing the average e¤ective sample size across the sample length and across all 2000

evaluations of a given �lter, i.e.

�Neff =

P20
i=1

P100
j=1

PT
t=1N

(i;j)
eff;t

20� 100� T :

Figure 2 shows that the average e¤ective sample size in the OPF, as expected, is orders of

magnitudes higher than the average e¤ective sample size for the standard PF. Hence, the new

proposal distribution suggested in this paper has a much better overlap with the posterior state

distribution than the state transition distribution used in the standard PF. We also note from

Figure 2 that optimally determining the value of 
t greatly increases the average e¤ective sample

size when two or more shocks drive the economy.

It is also interesting to look at the minimum value of the e¤ective sample size because it

shows whether the approximation of the posterior state distribution is close to a collapse around

a single particle at some point during the �ltering. Such a collapse is unfortunate and may lead

to large variation in the estimated log-likelihood function even thought the average e¤ective
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sample size is high.7 We therefore construct the following statistic

Nmin
eff =

P20
i=1

P100
j=1min

�n
N
(i;j)
eff;t

oT
t=1

�
20� 100

which is an average of the minimum e¤ective sample size across all 2000 evaluations of a given

�lter. Figure 3 shows a very low value of Nmin
eff in the standard PF, meaning that the approx-

imation of the state distribution is close to a collapse.8 On the other hand, the value of Nmin
eff

in the OPF is much higher and shows no sign of a collapse. Note also that with three and four

shocks to the economy, this is due to the optimization step for 
t which has a sizeable e¤ect on

the value of Nmin
eff .

< Figure 3 about here >

To summarize, the new proposal distribution suggested here greatly reduces the Monte Carlo

variation in the log-likelihood function compared to the variation in the standard PF. Inspection

of the e¤ective sample size shows that this improvement arises because the unknown state distri-

bution is better approximated by our proposal distribution than the state transition distribution

used in the standard PF.

5.2.1 Comparing the e¢ ciency gain of the OPF

Proposal distributions which condition on new observables are typical very time consuming to

implement, and it is therefore interesting to compare the computing time for the OPF to the

standard PF. This is done in Figure 4 which reports the average number of seconds it takes to

evaluate the �lters. We �rst note that the OPF without the optimization step, i.e. OPF(
 = 1),

is more time consuming to compute than the standard PF. This is due to the more elaborate

expression for the importance sampling weights. Adding the optimization step to the OPF

increases the computing time even further.

7We thanks an annonumous referee for making this point.
8We did not experience any cases where the standard PF or any other �lter lost track of the state distribution

and diverged.
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< Figure 4 about here >

A natural question is whether the improved accuracy of the OPF outweights its higher

computing time compared to the standard PF. In other words, should a researcher use the

somewhat slower OPF with relative few particles or the faster standard PF with a very large

number of particles? One way to answer this question is to estimate the number of particles

needed in the standard PF to achieve the same accuracy as in the OPF, and then compare the

computing time for the two alternatives. The OPF should be preferred if it is faster to compute

than the standard PF with the required number of particles, and visa versa. The �rst step in

doing this comparison is to estimate how the number of particles a¤ect i) the accuracy and ii)

the computing time in the two �lters. We deal with each of these relations in turn.

The relationship between the accuracy of a �lter std
�
LNi
�
and the number of particles N as

displayed in Figure 1 seems to be approximately given by a power function

std
�
LNi
�
= �1N

��2 ; (32)

where �1; �2 > 0. That is, the Monte Carlo variation decreases gradually with an increasing

number of particles. Note also that this power function has desirable limiting properties because

std
�
LNi
�
�! 0 for N �! 1 and std

�
LNi
�
�! 1 for N �! 0. Applying a log-transformation

and adding an error term �i s IID
�
0; �2�

�
gives

ln std (LNi ) = ln�1 � �2 lnN + �i: (33)

This regression model is straightforward to estimate by pooled OLS using the 20 simulated time

series (i = 1; 2; :::; 20) and the various number of particles for each of the �lters. The �tted

values of std
�
LNi
�
from this regression model are very close to the averages std

�
LN
�
reported

in Figure 1, which leaves support for the chosen speci�cation in (33).

The relationship between the number of particles and the computing time is well-approximated
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by a linear function. We therefore let

seci;N = �1 + �2N + �i

where �i s IID
�
0; �2�

�
and seci;N denotes the average number of seconds for evaluating a �lter

from one of the 20 simulated time series. This regression model is estimated by pooled OLS in

a similar manner as (33).

< Figure 5 about here >

Given the estimates of (�1; �2; �1; �2), it is straightforward to compute the following e¢ -

ciency measure

	k (x) =
number of seconds for the standard PF to give std

�
LN
�PF

= x

number of second for �lter k to give std (LN )k = x
(34)

where k = fOPF (
 = 1) , OPFg and x is a real number. To understand how we display this

e¢ ciency measure in Figure 5, consider the case for OPF with 1 shock to the economy. The

accuracy of the OPF with 500 particles is 0.41, and the standard PF is estimated to require

18,100 particles to achieve the same level of accuracy. Computing the standard PF with this

number of particles is estimated to take 4.62 seconds. This is about 18 times slower than the

OPF which only uses 0.26 seconds. Hence, values above the dotted line at 1 indicate that the

OPF is preferred to the standard PF, and visa verse for points below the dotted line.

We draw three conclusions from Figure 5. Firstly, the OPF is always more e¢ cient than the

standard PF. Secondly, the biggest e¢ ciency gain appear with two shocks and 1,000 particles

where the OPF is 35 times more e¢ cient than the standard PF. The case where the e¢ ciency

gain is lowest is with three and four shocks to the economy and 50,000 particles. Here, the

OPF is 3 times more e¢ cient than the standard PF. Thirdly, with three and four shocks to

the economy, the OPF is only more e¢ cient than the standard PF because of the optimization

step for 
t. Again, this shows the importance of our novel optimization step in the proposal

distribution.
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5.2.2 Comparing the OPF to the SPPF

An alternative to the standard PF is the SPPF as mentioned in section 3.3. Although this �lter

is very time consuming to compute, it might be that relative few particles in the SPPF could

be su¢ cient to give a low Monte Carlo variation in the log-likelihood function. If so, the SPPF

could be an attractive alternative to our OPF. We therefore compare the performance of the

OPF to the SPPF with relatively few particles in Figure 6. The SPPF is surprisingly found to

be only marginally better than the OPF, and the OPF even outperforms the SPPF when two

shocks drive the economy.

< Figure 6 about here >

The two �lters are, however, very di¤erent in terms of their computing time. The time it

takes to compute the SPPF is increasing linearly from 18 seconds with 400 particles to 45 seconds

with 1000 particles. The corresponding numbers for the OPF are 0.5 seconds and 1.5 seconds,

respectively. This implies that the OPF displays exceptional high e¢ ciency gains compared to

the SPPF as shown in Figure 7. For instance, the OPF is about 400 times more e¢ cient than

the SPPF when two shocks drive the economy. We therefore conclude that the OPF is also

preferred to the SPPF.

< Figure 7 about here >

5.3 Robustness analysis

This section examines the robustness of the previous �ndings in a setting with i) small measure-

ment errors in the observations and ii) non-normal structural shocks. Only the robustness of

the OPF to the standard PF is examined given the relatively less favorable results for the SPPF

shown in the previous section.
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5.3.1 Small measurement errors

A modi�cation of the Monte Carlo study to small measurement errors in the observables is

interesting because such errors lead to a very peaked probability distribution of yobst given the

states, and this makes it more demanding for particle �lters to approximate the posterior state

distribution. We model small measurement errors as a 50% reduction in the standard deviation

of all measurement errors as given in Table 1. This implies that the quarterly interest and

in�ation rates have measurement errors with a standard deviation of just 5 basis points, and the

errors in the quarterly growth rates have a standard deviation of 10 basis points. These small

measurement errors are not unusual in the literature. For instance, annualized interest rates are

often found to be measured with errors having a standard deviation of 4 � 5 = 20 basis points

(see for instance Graeve, Emiris & Wouters (2009)).

Figure 8 shows the variation in the log-likelihood function with small measurement errors.

We �rst note that with two or more shocks to the economy, the performance of the standard

PF deteriorates compared to the benchmark case. This weaker performance is also evident from

the e¤ective sample size for the standard PF (not reported), which is even lower compared to

the benchmark case. Hence, omitting information from new observables in the proposal distrib-

ution is costly with small measurement errors because few draws from the proposal distribution

apparently hit the very peaked probability distribution of yobst given the states.

The variation in the log-likelihood function from the OPF is largely unchanged with small

measurement errors when compared to the benchmark case with larger measurement errors in

Figure 1. The e¤ective sample size for the OPF is also unchanged (not reported), and this

shows the great value of conditioning on new observables in the proposal distribution when

measurement errors are small.

< Figure 8 about here >

The computing time for the two �lters with small measurement errors are similar to those

in Figure 4. This implies that the e¢ ciency measure in Figure 9 provides even further support

for the OPF than in the benchmark case.
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< Figure 9 about here >

5.3.2 Non-normal shocks

The second modi�cation of our Monte Carlo study is to have non-normal shocks driving the

economy. We consider the case where shocks are generated from the Laplace distribution which

has thicker tails than the normal distribution. This scenario is interesting because it implies

that large shocks occur more often than with normally distributed shocks, and this allow us to

study whether the OPF is more robust to state outliers than the standard PF. The standard

deviation for the measurement errors are as in the benchmark case.

Figure 10 shows that Laplace distributed shocks increase the variation in the log-likelihood

function for the standard PF compared to the benchmark case, and we thus con�rm that the

standard PF is sensitive to state outliers. The performance of the OPF is una¤ected compared

to the benchmark case, and the variation in the log-likelihood function remains low regardless

of the number of shocks and particles.

< Figure 10 about here >

The computing time for the two �lters with Laplace distributed shocks are similar to those

reported in Figure 4. This implies that the e¢ ciency measure in Figure 11 provides an even

stronger argument in favor of the OPF compared to the benchmark case. For instance, with

two shocks to the economy and 1,000 particles, the OPF is now 105 times more e¢ cient than

the standard PF.

< Figure 11 about here >

6 Conclusion

This paper improves the accuracy and speed of particle �ltering for non-linear DSGE models by

introducing the OPF. The de�ning feature of this particle �lter is a new proposal distribution

27



which incorporates information from new observables and has a small optimization step that

minimizes the distance to the optimal proposal distribution. We show that our proposal distri-

bution is a good approximation of the unknown state distribution, and this leads to much lower

Monte Carlo variation in the log-likelihood function compared to the standard PF. The OPF

is further shown to be 3 to 105 times more e¢ cient than the standard PF. These substantial

e¢ ciency gains arise from the fact that the OPF has a low variation in the log-likelihood function

even with relative few particles. This result holds even with small measurement errors in the

observables and non-normal shocks to the economy.

Although we have focused on applying the OPF to non-linear DSGE models, the �lter may

also be useful for estimating other economic models such as dynamic term structure models and

stochastic volatility models. In a purely �lter theoretical context, our new proposal distribution

may also be useful in various extensions of the general algorithm for particle �lters. Obvious

applications are in i) the Marginal Particle Filter by Klaas, Freitas & Doucet (2005), ii) the

Adaptive Particles Filters by Fox (2001) and Soto (2005), which estimate the number of particles

to be used each time period, and iii) in particle �lters which include a MCMC step (Gilks

& Berzuini (2001)) or a kernel smoothing procedure (Musso, Oudjane & LeGland (2001)) to

generate more variation in the approximated posterior state distribution.
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A The algorithm for the OPF

We use the notation [xt;Sx (t)] = CDKF (Sx (t� 1) ;xt�1;yt) to denote one iteration of the
CDKF from time point t� 1 to time point t based on Sx (t� 1), xt�1, and yt.

The Optimized Particle Filter (OPF)

� Initialization: t = 0
For i = 1; :::; N draw particles x̂(i)0 from p (x0) and let w

(i)
0 = 1

N for all i. The posterior

state estimate: x̂t = 1
N

PN
i=1 x̂

(i)
t

� For t > 0

1. Importance sampling step

�
h
x̂CDKFt ; ŜCDKFx (t)

i
= CDKF

�
ŜCDKFx (t� 1) ; x̂t�1;yt

�
� Let x(i)1;t = h1

�
x̂
(i)
t�1;�

�
for i = 1; :::; N

�Determine the value of 
t by numerical optimization

�Draw particles x(i)2;t from N
�
x
(i)
2;t

��� x̂CDKF2;t ; 
tŜ
CDKF
x2 (t)

�
for i = 1; :::; N

�Evaluate the importance sampling weights:

w
(i)
t = w

(i)
t�1

p
�
yt

���x(i)t ;�
�
p
�
x
(i)
t

���x̂(i)t�1 ;��
N
�
x
(i)
t

���x̂CDKF2;t ;
tŜ
CDKF
x2

(t)
� for i = 1; :::; N

�The contribution to the log-likelihood function: Lt = Lt�1 + log(
PN
i=1w

(i)
t )

�For i = 1; :::; N compute ~w(i)t = w
(i)
t =

PN
i=1w

(i)
t

2. Resampling step:

�Resample with replacement from
n
x
(i)
0:t

oN
i=1

with probabilities
n
~w
(i)
t

oN
i=1

to obtain

a samples of size N approximately distributed according to p (x0:t jy1:t ;�). This
new sample is denoted by

n
x̂
(i)
0:t

oN
i=1

� In
n
x̂
(i)
t

oN
i=1

we have w(i)t = 1
N for all i = 1; :::; N

3. State estimates

�The posterior state estimate: x̂t = 1
N

PN
i=1 x̂

(i)
t

B Calculating the �ve observables for the Monte Carlo study

This section shows how to calculate the �ve observables in the Monte Carlo study. The presence
of non-stationary shocks (zt and �t) imply that variables such as ct, it, and yt are non-stationary,
and this fact must be taken into account when solving the DSGE model. We adopt the standard
method to deal with this feature by approximating the model�s solution around the economy�s
balanced growth path. This is done by scaling the non-stationary variables such that they
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become stationary. For instance, ct and yt are scaled by 1=z�t and it is scaled by 1=�tz
�
t , and

this implies that Ct � ct=z
�
t , Yt � yt=z

�
t , and It � i=�tz

�
t are stationary variables.

Applying a log-transformation, the output from the approximated DSGE model is then

yt �

2666664
R̂t
�̂t
Ĉt
Ît
Ŷt

3777775 = g (xt) ;

where we use the standard notation that a hat denotes deviation from the deterministic steady
state, i.e. v̂t = ln vt

vss
. The elements in yt must be transformed to make them comparable to

empirical data series. We now show how this transformation is done.
For the nominal interest rate we have

Robst = lnRss + R̂t;

where Robst is the observed quarterly net interest rate. The expression for observed quarterly
in�ation rate is similar, i.e.

�obst = ln�ss + �̂t:

The expressions for real quarterly consumption growth is given by

ln�obsc;t � ln
ct
ct�1

= ln
Ctz

�
t

Ct�1z�t�1
= ln

Ct
Css

� ln Ct�1
Css

+ ln
z�t
z�t�1

= Ĉt � Ĉt�1 + ln�z�;ss + �̂z�;t

For the quarterly growth rate in investments we have

ln�obsi;t � ln
it
it�1

= ln
Itz

�
t�t

It�1z�t�1�t�1
= ln

It
Iss

� ln It�1
Iss

+ ln
z�t
z�t�1

+ ln
�t
�t�1

= Ît � Ît�1 + ln�z�;ss + �̂z�;t + ln��;ss + �̂�;t

Finally, for the real quarterly growth rate in output

ln�obsy;t � ln
yt
yt�1

= ln
Ytz

�
t

Yt�1z�t�1
= ln

Yt
Yss

� ln Yt�1
Yss

+ ln
z�t
z�t�1

= Ŷt � Ŷt�1 + ln�z�;ss + �̂z�;t

Adding measurement errors vt to the observables, we then have

yobst �

266664
Robst
�obst
ln�obsc;t
ln�obsi;t
ln�obsy;t

377775+ vt:
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C The importance sampling weights in the OPF

�
�
xtjx0:t�1;yobs1:t

�
:

�
x1;t
x2;t

�
=

�
h1 (xt�1)
x̂CDKFt

�
+

�
0


tŜ
CDKF
x2 (t) �t

�
with vt � NID (0;Rv) and

�t � NID (0; I). We let ne = dim (�t) = dim (w2;t) and nx2 = ne.

Normally distributed structural shocks

We have �wt � NID
�
0;

�
0 0
0 Rw2

��
which implies

wt = wt�1
p(yobst j~xt;�)p(~xtj~xt�1;�)

�(~xtj~x0:t�1;yobs1:t )

= wt�1 � (2�)�ny=2 det (Rv)�1=2 exp
n
�0:5

�
yobst � g (~xt;�)

�0
R�1v

�
yobst � g (~xt;�)

�o
� (2�)�nx2=2 det (Rw2)

�1=2 exp
�
�0:5 (x2;t � h2 (x2;t�1;�))0R�1w2 (x2;t � h2 (x2;t�1;�))

	
� (2�)ne=2 det

�

tŜ

CDKF
x2 (t) 
tŜ

CDKF
x2 (t)0

�1=2
� exp

�
0:5
�
ŜCDKFx2 (t) �t

�0 �
ŜCDKFx2 (t) ŜCDKFx2 (t)0

��1 �
ŜCDKFx2 (t) �t

��
= wt�1 � (2�)�ny=2 det

�

tŜ

CDKF
x2 (t)

�
det (Rv)

�1=2 det (Rw)
�1=2

� exp
n
�0:5

�
yobst � g (~xt;�)

�0
R�1v

�
yobst � g (~xt;�)

�o
� exp

�
�0:5 (x2;t � h2 (x2;t�1;�))0R�1w2 (x2;t � h2 (x2;t�1;�))

	
� exp

�
0:5 (�t)

0 �t
	

Laplace distributed structural shocks

We have �wt � Laplace

�
0;

�
0 0
0 Rw2

��
which implies

wt = wt�1
p(yobst j~xt;�)p(~xtj~xt�1;�)

�(~xtj~x0:t�1;yobs1:t )

= wt�1 � (2�)�ny=2 det (Rv)�1=2 exp
n
�0:5

�
yobst � g (~xt;�)

�0
R�1v

�
yobst � g (~xt;�)

�o
� 1

(
p
2)
nx2
Qnx2

i=1

p
Rw2 (i;i)

exp

�
�
p
2
Pnx2
i=1

jxnx1+i;t�hnx1+i(x2;t�1;�)jp
Rw2 (i;i)

�
� (2�)ne=2 det

�

tŜ

CDKF
x2 (t) 
tŜ

CDKF
x2 (t)0

�1=2
� exp

�
0:5
�
ŜCDKFx2 (t) �t

�0 �
ŜCDKFx2 (t) ŜCDKFx2 (t)0

��1 �
ŜCDKFx2 (t) �t

��
= wt�1�(2�)(ne�ny)=2 det (Rv)�1=2 exp

n
�0:5

�
yobst � g (~xt;�)

�0
R�1v

�
yobst � g (~xt;�)

�o
� 1

(
p
2)
nx2
Qnx2

i=1

p
Rw2 (i;i)

exp

�
�
p
2
Pnx2
i=1

jxnx1+i;t�hnx1+i(x2;t�1;�)jp
Rw2 (i;i)

�
�det

�

tŜ

CDKF
x2 (t)

�
exp

�
0:5 (�t)

0 �t
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Table 1: Calibration for the DSGE model

Label Parameters Values
Discount factor � 0:9995
Habit degree b 0:80
Habit p ersistence �x 0:95
Preference �1 6
Preference �2 0:88
Adj costs for investm ents � 2:0
Depreciation rate � 0:025
Cobb-Douglas param eter � 0:36
Price elastic ity � 6
Degree of price stick iness � 0:85
Reaction to lagged interest rate �R 0:99
Reaction to in�ation �� 1:65
Reaction to output �y 0:15

In�ation rate in steady state �ss 1:0070
Growth rate in technology sho cks �z;ss 1:0044

Growth rate in investm ent sho cks ��;ss 1:0007

Persistency in stationary technology sho cks �a 0:9
Persistency in investm ent sho cks �e 0:9

std . of nonstationary technology sho cks

p
V ar (wz;t) 0:008

std . of stationary technology sho cks

p
V ar (wa;t) 0:012

std . of investm ent sho cks

p
V ar (we;t) 0:030

std . of sho cks to interest rate ru le

p
V ar (wR;t) 0:001

std . of errors in the interest rate

p
V ar (vR;t) 0:001

std . of errors in in�ation

p
V ar (v�;t) 0:001

std . of errors in the grow th rate for consumption

p
V ar (v�c;t) 0:002

std . of errors in the grow th rate for investm ents

p
V ar (v�i;t) 0:002

std . of errors in grow th rate for output

p
V ar (v�y;t) 0:002
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Table 2: Empirical and simulated moments
Data is from the Federal Reserve Bank of St. Louis covering the period 1956Q4-2009Q2 in the US. The
quarterly interest rate is measured by the rate in the secondary market (TB3MS). The quarterly
in�ation rate is for consumer prices. The growth rate in consumption is calculated from real
consumption expenditures (PCECC96). The series for real private �xed investments (FPIC96) is used
to calculate the growth rate in investments. The growth rate in output is calculated from real GDP
(GDPC96). All growth rates are expressed in quarterly terms and in per capita based on the total
population in the US. Simulated moments are calculated based on a simulated time series of 1,000,000
observations.

Rt �t �ct �it �yt
Empirical moments
Mean 0.0131 0.0088 0.0055 0.0056 0.0048
Standard deviation 0.0070 0.0063 0.0071 0.0254 0.0092
Skewness 1.0787 0.9700 -0.6719 -1.1384 -0.4525
Kurtosis 4.8934 4.7352 4.9795 6.8528 4.5435

Simulated moments using
Normal distributed shocks
Mean 0.0134 0.0083 0.0048 0.0055 0.0048
Standard deviation 0.0088 0.0063 0.0084 0.0270 0.0118
Skewness 0.5664 1.1100 0.0337 -0.1646 0.0495
Kurtosis 3.9029 5.0441 3.0840 3.0413 3.0406

Simulated moments using
Laplace distributed shocks
Mean 0.0134 0.0083 0.0048 0.0055 0.0048
Standard deviation 0.0088 0.0062 0.0084 0.0269 0.0118
Skewness 0.5969 1.1653 0.0217 -0.2488 0.0167
Kurtosis 4.1262 5.4804 4.4121 4.1642 3.7135
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Figure 1: Variation in log-likelihood function
The x-axis shows the number of particles, and the y-axis shows the standard deviation in the estimated
log-likelihood function for normally distributed shocks.
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Figure 2: The average e¤ective sample size
The x-axis shows the number of particles, and the y-axis shows average e¤ective sample size for
normally distributed shocks.
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Figure 3: The minimum e¤ective sample size
The x-axis shows the number of particles, and the y-axis shows the statistic for the minimum e¤ective
sample size in the case of normally distributed shocks.
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Figure 4: The average number of seconds to compute the �lters
The x-axis shows the number of particles, and the y-axis shows the average number of seconds for
running the �lters with normally distributed shocks. All calculatings are done in Fortran 90 on Dell
SC1435 compute-nodes, each with 2 dualcore Opteron 2.6 GHz, 8 GB memory, and 250 GB disk.
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Figure 5: E¢ ciency gain compared to the standard PF
The x-axis shows the number of particles for the two versions of the OPF, and the y-axis shows the
e¢ ciency gain compared to the standard PF.
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Figure 6: Variation in log-likelihood function: the SPPF
The x-axis shows the number of particles, and the y-axis shows the standard deviation in the estimated
log-likelihood function for normally distributed shocks.
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Figure 7: E¢ ciency gain compared to the SPPF
The x-axis shows the number of particles for the OPF, and the y-axis shows the e¢ ciency gain
compared to the SPPF.
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Figure 8: Variation in log-likelihood function: Small measurement errors
The x-axis shows the number of particles, and the y-axis shows the standard deviation in the estimated
log-likelihood function for normally distributed shocks and small measurement errors in the observables.
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Figure 9: E¢ ciency gain compared to the standard PF: Small measurement errors
The x-axis shows the number of particles for the OPF, and the y-axis shows the e¢ ciency gain compared
to the standard PF for normally distributed shocks and small measurement errors in the observables.
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Figure 10: Variation in log-likelihood function: Laplace distributed shocks
The x-axis shows the number of particles, and the y-axis shows the standard deviation in the estimated
log-likelihood function for Laplace distributed shocks.
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Figure 11: E¢ ciency gain compared to the standard PF: Laplace distributed shocks
The x-axis shows the number of particles for the OPF, and the y-axis shows the e¢ ciency gain
compared to the standard PF with Laplace distributed shocks.
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