Optimal Fiscal and Monetary Policy With Occasionally Binding Zero Bound Constraints

Taisuke Nakata

New York University

June, 2012
Question: How should the government conduct fiscal policy at the zero lower bound (ZLB) in the face of uncertainty?
Many new research on fiscal policy at the zero lower bound:

- Christiano, Eichenbaum, and Rebelo (2011), Eggertsson (2010) and Woodford (2011) show that government spending multiplier is large at the ZLB.

- Eggertsson (2001 and 2006), Nakata (2011), and Werning (2011) show that it is also optimal to increase government spending at the ZLB.
Many new research on fiscal policy at the zero lower bound:

- Christiano, Eichenbaum, and Rebelo (2011), Eggertsson (2010) and Woodford (2011) show that government spending multiplier is large at the ZLB.

- Eggertsson (2001 and 2006), Nakata (2011), and Werning (2011) show that it is also optimal to increase government spending at the ZLB.

- They look at deterministic models.
This paper characterizes optimal fiscal and monetary policy when the nominal interest rate is subject to the ZLB constraint in a stochastic environment.

In the model:

- Two policy instruments: the nominal interest rate and government spending.
- The government makes decisions sequentially (i.e. no commitment).
- An exogenous variation in the household’s discount rate occasionally forces the government to lower nominal interest rates to zero.
In the stochastic environment,

- optimal increase in the government spending is larger.
In the stochastic environment,

- optimal increase in the government spending is larger.

A key mechanism:

- Policy functions for allocations and prices are highly concave or convex due to the ZLB constraint.
- A mean-preserving spread in the shock distribution increases expected real interest rates and decreases expected real marginal costs.
- Thus, we see larger declines in consumption, output, and inflation in the stochastic environment.
In the stochastic environment,

- the access to government spending policy decreases welfare.
In the stochastic environment,

- the access to government spending policy decreases welfare.

A key mechanism:

- The government reduces nominal interest rate more aggressively before reaching the ZLB if it does not have access to government spending policy.
- This creates a temporary increase in consumption.
Model

- Discrete Time, Infinite Horizon. Economy starts at $t=1$.
- A representative household.
- A final good producer.
- A continuum of intermediate-good producers, indexed by $i \in [0, 1]$
- The government.
Model

- Discrete Time, Infinite Horizon. Economy starts at $t=1$.

- A representative household.
 - Discount factor shocks: $\{\delta_t\}_{t=1}^{\infty}$.
 - $\delta_t - 1 = \rho(\delta_{t-1} - 1) + \epsilon_t, \epsilon_t \sim N(0, \sigma^2_\epsilon)$.

- A final good producer.

- A continuum of intermediate-good producers, indexed by $i \in [0, 1]$.

- The government.
Model

- Discrete Time, Infinite Horizon. Economy starts at $t=1$.

- A representative household.
 - Discount factor shocks: $\{\delta_t\}_{t=1}^{\infty}$.
 - $\delta_t - 1 = \rho(\delta_{t-1} - 1) + \epsilon_t, \epsilon_t \sim N(0, \sigma_\epsilon^2)$.

- A final good producer.

- A continuum of intermediate-good producers, indexed by $i \in [0, 1]$
 - Linear Production Technology: $Y_{i,t} = N_{i,t}$
 - Quadratic Price Adjustment Costs: $RC_{i,t} = \frac{\varphi}{2} \left[\frac{P_{i,t}}{P_{i,t-1}} - 1 \right]^2 Y_t$

- The government.
Model

- Discrete Time, Infinite Horizon. Economy starts at $t=1$.

- A representative household.
 - Discount factor shocks: $\{\delta_t\}_{t=1}^{\infty}$.
 - $\delta_t - 1 = \rho(\delta_{t-1} - 1) + \epsilon_t$, $\epsilon_t \sim N(0, \sigma^2_{\epsilon})$.

- A final good producer.

- A continuum of intermediate-good producers, indexed by $i \in [0,1]$
 - Linear Production Technology: $Y_{i,t} = N_{i,t}$
 - Quadratic Price Adjustment Costs: $RC_{i,t} = \frac{\phi}{2} \left[\frac{P_{i,t}}{P_{i,t-1}} - 1 \right]^2 Y_t$

- The government.
 - Lump-sum tax available. Supply of the government bond is zero.
 - $G_t = T_t$
Symmetric Equilibrium

Given any P_0 and $\{\delta_t\}_{t=1}^\infty$, a set of symmetric implementable equilibria is characterized by $\{C_t, N_t, Y_t, w_t, \Pi_t, R_t, G_t\}_{t=1}^\infty \equiv \{d_t\}_{t=1}^\infty$ satisfying

$$C_t^{-\chi_c} = \beta \delta_t R_t E_t C_{t+1}^{-\chi_c} \Pi_{t+1}^{-1}$$

$$w_t = N_t^{\chi_n} C_t^{\chi_c}$$

$$\frac{Y_t}{C_t^{\chi_c}} \left[\varphi(\Pi_t - 1) \Pi_t - (1 - \theta) - \theta w_t \right] = \beta \delta_t E_t \frac{Y_{t+1}}{C_{t+1}^{\chi_c}} \varphi(\Pi_{t+1} - 1) \Pi_{t+1}$$

$$Y_t = C_t + G_t + \frac{\varphi}{2} [\Pi_t - 1]^2 Y_t$$

$$Y_t = N_t$$

$$R_t \geq 1$$

where $\Pi_t \equiv \frac{P_t}{P_{t-1}}$ and $w_t = \frac{W_t}{P_t}$.
Government’s Optimization Problem

Given \(\{ V_{t+1}(\cdot), C_{t+1}(\cdot), N_{t+1}(\cdot), \Pi_{t+1}(\cdot), w_{t+1}(\cdot), R_{t+1}(\cdot), G_{t+1}(\cdot) \} \), the problem of the government at time \(t \) is

\[
V_t(\delta_t) = \max_{\{d_t\}} \left[\frac{C_t^{1-\chi_c}}{1 - \chi_c} - \frac{N_t^{1+\chi_n}}{1 + \chi_n} + \chi_g,0 \frac{G_t^{1-\chi_g}}{1 - \chi_g,1} \right] + \beta \delta_t E_t V_{t+1}(\delta_{t+1})
\]

subject to the equations characterizing symmetric implementable equilibria.

A Markov-Perfect Equilibrium consists of a set of time-invariant value and policy functions, \(\{ V(\cdot), C(\cdot), N(\cdot), \Pi(\cdot), w(\cdot), R(\cdot), G(\cdot) \} \) that solves the problem above.
Table: Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Calibrated Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>Discount rate</td>
<td>$\frac{1}{1+0.0075} \approx 0.9925$</td>
</tr>
<tr>
<td>χ_c</td>
<td>Inverse intertemporal elasticity of substitution for C_t</td>
<td>1.0</td>
</tr>
<tr>
<td>χ_n</td>
<td>Inverse labor supply elasticity</td>
<td>1.0</td>
</tr>
<tr>
<td>$\chi_{g,0}$</td>
<td>Utility weight on G_t</td>
<td>0.25</td>
</tr>
<tr>
<td>$\chi_{g,1}$</td>
<td>Intertemporal elasticity of substitution for G_t</td>
<td>1.0</td>
</tr>
<tr>
<td>θ</td>
<td>Elasticity of substitution among intermediate goods</td>
<td>10</td>
</tr>
<tr>
<td>φ</td>
<td>Price adjustment cost</td>
<td>150</td>
</tr>
<tr>
<td>ρ</td>
<td>AR(1) coefficient for the discount factor shock</td>
<td>0.8</td>
</tr>
<tr>
<td>σ_ϵ</td>
<td>The standard deviation of shocks</td>
<td>$[0, \frac{0.42}{100}]$</td>
</tr>
<tr>
<td></td>
<td>to the discount factor shock</td>
<td></td>
</tr>
</tbody>
</table>
Global Solution Method

Time-iteration method ("policy function iteration").
Markov-Perfect Policy Without Uncertainty

Nominal Interest Rate (Annualized Percentage)

Inflation (Annualized Percentage)

Government Spending

Labor Supply/Output

Consumption

Red Line: Deterministic ($\sigma_\epsilon = 0$)
Markov-Perfect Policy With/Without Uncertainty

Red Line: Deterministic ($\sigma_\varepsilon = 0$). Black Line: Stochastic ($\sigma_\varepsilon = \frac{42}{100}$)
Allocations With/Without Fiscal Policy

Given
\{V_{c,t+1}(\cdot), C_{c,t+1}(\cdot), N_{c,t+1}(\cdot), \Pi_{c,t+1}(\cdot), w_{c,t+1}(\cdot), R_{c,t+1}(\cdot), G_{c,t+1}(\cdot)\},
the problem of the government at time t is

\[V_{c,t}(\delta_t) = \max\{d_t\} \left[\frac{C_{c,t}^{1-\chi_c}}{1-\chi_c} - \frac{N_{c,t}^{1+\chi_n}}{1+\chi_n} + \chi_g,0 \frac{G_{c,t}^{1-\chi_g,1}}{1-\chi_g,1} \right] + \beta \delta_t E_t V_{c,t+1}(\delta_{t+1}) \]

subject to

- the equations characterizing symmetric implementable equilibria
- \(G_{c,t} = \bar{G} \)
Table: Welfare Gains from Fiscal Policy

<table>
<thead>
<tr>
<th>Welfare Gains from Fiscal Policy*</th>
<th>-0.07 %</th>
</tr>
</thead>
</table>

*Perpetual consumption transfer (expressed as a percentage of the steady-state consumption) required to make the agent in the economy without fiscal policy as well-off as the agent in the economy with fiscal policy.
Table: Welfare Gains from Fiscal Policy

<table>
<thead>
<tr>
<th>Welfare Gains from Fiscal Policy*</th>
<th>With production subsidy</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.07 %</td>
<td>0.08 %</td>
</tr>
</tbody>
</table>

*Perpetual consumption transfer (expressed as a percentage of the steady-state consumption) required to make the agent in the economy without fiscal policy as well-off as the agent in the economy with fiscal policy.
Summary

In the stochastic environment,

- Optimal increase in the government spending is larger.
- the access to government spending policy decreases welfare.
Extra slides
Household

\[
\max_{\{C_t, N_t, B_t\}_{t=1}^\infty} \quad E_1 \sum_{t=1}^\infty \beta^{t-1} \left[\prod_{s=0}^{t-1} \delta_s \right] \left[\frac{C_t^{1-\chi_c}}{1 - \chi_c} - \frac{N_t^{1+\chi_n}}{1 + \chi_n} + \chi_{g,0} \frac{G_t^{1-\chi_g,1}}{1 - \chi_{g,1}} \right]
\]

subject to

\[
P_t C_t + R_t^{-1} B_t \leq W_t N_t + B_{t-1} - P_t T_t + P_t \Phi_t
\]

where \(B_0 = 0\) and \(\delta_1\) is given.

\(\beta \delta_t\) is the relative weight the agent puts on the future utility flows at time \(t\):

\[
\beta \delta_0 U(C_1, N_1, G_1) + \beta^2 \delta_0 \delta_1 U(C_2, N_2, G_2) + \beta^3 \delta_0 \delta_1 \delta_2 U(C_3, N_3, G_3) + ...$

A final-good firm aggregates intermediate goods by CES technology.

Intermediate-good firms:

\[
\max_{\{P_{i,t}\}_{t=1}^{\infty}} E_1 \sum_{t=1}^{\infty} \beta^{t-1} \left[\prod_{s=0}^{t-1} \delta_s \right] \lambda_t \left[P_{i,t} Y_{i,t} - W_t N_{i,t} - P_t \frac{\varphi}{2} \left[\frac{P_{i,t}}{P_{i,t-1}} - 1 \right]^2 Y_t \right]
\]

subject to

\[
Y_{i,t} = \left[\frac{P_{i,t}}{P_t} \right]^{-\theta} Y_t \quad \& \quad Y_{i,t} = N_{i,t}
\]

\[
P_{i,0} = P_0 \text{ for some given constant } P_0 > 0
\]
Government’s Policy Instruments

- Supply of the government bond is zero.
- Lump-sum taxation available. No distortionary taxation.
- The government budget constraint: $G_t = T_t$
- The nominal interest rate is subject to the ZLB constraint: $R_t \geq 1$.
Market-Clearing

\[Y_t = C_t + G_t + \int_0^1 \frac{\varphi}{2} \left[\frac{P_{i,t}}{P_{i,t-1}} - 1 \right]^2 Y_t \, di \]

\[N_t = \int_0^1 N_{i,t} \, di \]

\[B_t = 0 \]
Symmetric Equilibrium (1)

Given P_0 and $\{\delta_t\}_{t=1}^{\infty}$, a symmetric implementable equilibrium consists of

- **Allocations:** $\{C_t, N_t, N_{i,t}, Y_t, Y_{i,t}\}_{t=1}^{\infty}$
- **Prices:** $\{W_t, P_t, P_{i,t}\}_{t=1}^{\infty}$
- **Policy Instruments:** $\{R_t, G_t, T_t\}_{t=1}^{\infty}$

such that

- Allocations solve the problem of the household given prices and policies.
- $P_{i,t}$ solves the problem of firm i.
- $P_{i,t} = P_{j,t}$ for all $i \neq j$.
- Markets clear.
- Government budget constraint is satisfied.