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Abstract

New-generation DSGE models are sometimes misspeci�ed in di-
mensions that matter for their forecasting performance. The paper
suggests one way to improve the forecasts of a DSGE model using a
conditioning information that need not be accurate. The technique
presented allows for agents to anticipate the information on the con-
ditioning variables several periods ahead. It also allows the forecaster
to apply a continuum of degrees of uncertainty around the mean of
the conditioning information, making hard-conditional and uncondi-
tional forecasts special cases. An application to a small open-economy
DSGE model shows that the bene�ts of conditioning depend crucially
on the ability of the model to capture the correlation between the
conditioning information and the variables of interest.
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1 Introduction

In addition to being useful for policy analysis, new-generation DSGE models
have also been shown to compare well with models such as VARs and BVARs
in terms of forecast accuracy (Smets and Wouters (2004), Adolfson et al.
(2005)). Nevertheless, DSGE models are sometimes misspeci�ed in some
dimensions that a¤ect their forecasting performance (see e.g. Del-Negro et al.
(2005)). In the event of huge and unexpected shocks, models that lack the
�exibility to adapt are very likely to deliver poor (short-term) forecasts. This
paper shows how the theory of conditional forecasts can be extended to DSGE
models. It argues that to the extent that leading information is available,
relevant and reliable, conditioning on it may reduce the uncertainty in the
endogenous variables and thereby improve the forecasting performance of a
DSGE model without necessarily having to change its structure1.
The need to incorporate conditioning information into a forecast comes

naturally in circumstances in which observations on some variables are re-
leased before others, or in cases where it is believed that some other model
may be superior to the DSGE model of interest when it comes to forecasting
the variable to be used as conditioning information. In any case, having a
systematic way to incorporate that information in the forecasts from a model
more easily allow the tracking of systematic forecast errors than in the case
of judgemental forecasts where there is no formal model of how the data are
used (see e.g. Robertson et al. (2005)).
Methods of conditional forecasts have typically been developed and ap-

plied for models with fewer theoretical underpinnings than DSGEmodels. To
mention a few, Doan et al. (1984) exploit the covariance matrix structure in
a VAR to account for the impact of conditioning a forecast on post-sample
values for some variables in their model. Waggoner and Zha (1999) ex-
tend Doan, Litterman and Sims and use Bayesian methods to compute the
exact �nite-sample distribution of conditional forecasts in both structural
and reduced-form VARs, accounting for the uncertainty in the parameters.
Robertson et al. (2005) develop a relative entropy procedure for imposing
restrictions on simulated forecasts distributions.
DSGE models o¤er a better structural interpretation than VARs and

from a policy standpoint, we need more than mere forecasts, we need them

1Changing the structure of the model may imply that one understand the microfoun-
dations of some observed phenomenon, which is not always obvious. The recent �nancial
crisis and the problems associated with volatile oil prices are cases in point.
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to be economically interpretable. Only few papers have attempted to com-
pute constrained forecasts in a DSGE model. Christo¤el et al. (2007) con-
struct conditional forecasts for the New Area-Wide Model of the Euro Area.
Benes et al. (2008) interpret the "o¤-model information" they condition on
as judgement and compute forecasts based on KITT (the RBNZ�s DSGE
model). Both papers as well as the aforementioned typically assume no un-
certainty around the information they condition on, which is known as hard
conditioning, even if the conditioning information may represented by fore-
casts coming from other models2.
This paper is close in spirit with Andersson et al. (2008), who extend

Waggoner and Zha (1999) and develop a procedure for density-conditional
forecasts for a SVAR, which they estimate on Swedish data. Interestingly,
they show that the distribution of the unrestricted variables may be too nar-
row if the model is conditioned only upon central tendencies. We take that
idea one step further and argue that this holds true even if there is no uncer-
tainty about the conditioning information. The technique we present allows
the forecaster to apply a continuum of degrees of uncertainty around the
mean of the conditioning information, making hard-conditional and uncon-
ditional forecasts special cases. Because it does not take it for granted that
conditioning will necessarily improve forecasts, given that the models are in-
herently misspeci�ed and that the conditioning information itself need not be
accurate (forecasts from other models, data revisions, etc.), the paper aims
at shedding light into the conditions for which hard conditions are superior
to soft conditions or to no conditions and vice-versa3. This has the advantage
of pointing out the variables for which the cross-equations restrictions of the
model may be too tight.
A further contribution of the paper is the discussion of di¤erence con-

cepts that are not present in VARs. Unlike in VARs, the type of condi-
tioning method employed in a DSGE depends on whether the conditioning
information is anticipated or not. As rational agents exploit any available
information that can improve their forecasts, anticipated events matter for

2The exception to this is Waggoner and Zha (1999), who also discuss soft conditioning.
However, they use an ine¢ cient rejection sampling procedure to do soft conditioning.

3For tightly parameterized models, model misspeci�cation is certainly an issue if the
hypothesized relationships are not supported by the data. Such misspeci�cations may be
pushed into the shock processes, resulting in an uncertainty that may be too large to be
useful for policy analysis. In that case, a further advantage of conditioning then, is to
reduce that uncertainty.
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their current decisions. The paper suggests a way of extending the unantici-
pated shocks framework to the more general case of anticipated ones.
The rest of the paper proceeds as follows: section 2 illustrates conditioning

in a bivariate normal distribution. While this simple example serves the
purpose of building some intuition, it also helps us draw conclusions that
will reappear when we turn to DSGE models. Section 3 then presents the
general framework for forecasting with DSGE models. Using that framework,
section 4 proceeds to deriving the formulas for conditional forecasts for both
anticipated and unanticipated events. Section 5 considers an application
of the techniques derived in section 4 to the Lubik and Schorfheide (2007)
model estimated on Canadian data. The application evaluates the bene�ts of
conditioning when the dynamics of the data is not adequately nailed by the
model. In particular, we contrast conditional forecasts for various degrees
of soft conditioning and for various numbers of anticipated steps. Section 6
concludes.

2 Conditioning in a bivariate normal distrib-
ution

In order to build some intuition for the type of analysis we will be doing
in the next sections, consider the following conditional distribution for some
variable y:

f (yjx) = N

�
�y �

��y
�x

(�x � x) ; �2y
�
1� �2

��
where �y is the (marginal) mean of y, �y its (marginal) standard deviation
and � the coe¢ cient of correlation between x and y. Likewise, �x denotes
the mean of x and �x its variance.
Assume x = 0, �y = 0, �y = 1, and � = :5. Then for various values of �x

and �x, we can compute the marginal density f (yjx). We pick those values
from a truncated normal distribution for x

f (xjx 2 [x; x]) =
�
�
x��x0
�x0

�
�x0

h
�
�
x��x
�x0

�
� �

�
x��x0
�x0

�i
where �x0 and �x0 are such that lim

[x;x]�!(�1;+1)
f (xjx 2 [x; x]) = N (�x0; �x0),
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� (�) is the standard normal probability density function and � (�) the associ-
ated cumulative density function. It is easy to derive �xjx2[x;x] and �xjx2[x;x].
The boundaries of x will be given by x = :5 � ��x and x = :5 + ��x, where
we will let � = 3; 2:5; 2; 1:5; 1; :5; :1.
Figure 1 shows how the density of y conditional on x changes as we vary �.

For large values of � such as 3, the conditional distribution does not change
much, but as we decrease �, we become more and more informative about
the location of x and the conditional distribution of y shifts to the left. This
implies that some of the areas of the support of y that were unlikely under
large values of � become more and more likely.
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Figure 1: Bivariate normal example

We can think of x as some conditioning information that helps improve
our inference about the density of y. If the model is good, and the condi-
tioning information is good, then we can expect the mean of y to be around
�4 when �, which can be interpreted here as the degree of tightening, is .1.
If the model is incorrect, or if the conditioning information is bad, there is
no guarantee that we can make good predictions about y. Even if the model
is not good, it may still capture the correlation between x and y in such a
way that a good information on x implies a good prediction on y.
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Although this is a simple example, the conclusions derived here extend
to more complicated settings as we will see later. But before generalizing
those ideas to the case where x and y are matrices of containing observations
of several variables over time, we �rst turn to the framework for which the
formulas will be derived.

3 General framework for forecasting with DSGE
models

Let the DSGE model in linearized form be given by

E [��1 (�) yt�1 +�0 (�) yt +�1 (�) yt+1 +	(�) "t] = 0, "t � N (0; I) (1)

where yt is a m�1 vector of endogenous variables (including both states and
controls), "t is a m" � 1 vector of exogenous shocks, ��1, �0, �1 are m�m
matrices, 	 is an m � m" matrix. Those matrices are a function of �, the
vector of deep structural parameters of the model.
The traditional solution to this system has a state space representation

of the form

yt = A (�) yt�1 +B (�) "t (2)

where A is a mA �mA matrix, B is mA �m".
A natural way to compute conditional forecasts in a DSGE model with

variables that are unobservable to the econometrician is to use the Kalman
�lter. In practice, conditional forecasting using the Kalman �lter relies on the
smoother to re-estimate the initial conditions for the unobservable variables,
which is an advantage. However, the Kalman �lter approach would typically
treat the conditioning information as accurate4. Moreover, using the Kalman
�lter, we can only do hard conditioning. We cannot condition on a density
or on an interval, which precludes the use of soft conditioning.
The approach used in this paper di¤ers from the Kalman �lter approach in

that it does not assume that the conditioning information is accurate. In ad-
dition, it explicitly allows for the possibility of agents reacting to anticipated

4Measurement errors can be introduced to account for uncertainty in the conditioning
information, but it would be di¢ cult to obtain estimates for their standard errors without
estimating the other parameters of the model jointly, which means using historical data
only.
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future events beyond one step ahead5. In order to allow for the possibil-
ity of agents reacting to future events anticipated several periods ahead, we
generalize equation (2) above to

yt = A (�) yt�1 +
nX
j=1

Bj (�) "t+j

When j = 1, this solution is the same as the traditional one. Appendix
(A) shows how to derive matrices Bj (�), j = 1; 2; :::; n using an undetermined
coe¢ cients approach.
We assume that the state of the economy is known at time T and we are

interested in conditional forecasts k periods ahead. The k-step forecast at
time T can be written as

yT+k = AkyT +
Pn

j=1

Pk
s=1A

k�sBj"T+j+s�1
=

Pn+k�1
t=1 �k;t"T+t

Stacking all the forecasts up to period T + k, we get the following repre-
sentation:

26664
yT+1
yT+2
...

yT+k

37775
| {z }

Y

=

26664
A
A2

...
Ak

37775 yT
| {z }

�Y

+

26664
�1;1 � � � �1;n 0 � � � 0

�2;1 � � � �2;n �2;n+1
. . .

...
...

...
...

...
. . . . . .

�k;1 � � � �k;n �k;n+1 � � � �k;n+k�1

37775
| {z }

�

266666664

"T+1
...

"T+n
"T+n+1
...

"T+n+k�1

377777775
| {z }

"

(3)
When n = 1, the shocks are unanticipated and � takes a form that is

analogous to the one used by Waggoner and Zha (1999)

� =

26664
B 0 � � � 0

AB B
. . .

...
...

. . . . . . 0
Ak�1B Ak�2B � � � B

37775
5This approach, unlike the Kalman �lter, does not change the initial conditions of the

state vector.
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Equation (3) implies that

Y � N
�
�Y ;��0

�
4 Conditional Forecasts and Probability Dis-

tributions

Suppose we are given the restriction

DY � TN (�;
; [L;H]) =) D �Y +R" � TN (�;
; [L;H])

where matrix D is q �mk and is assumed to be of full rank, � is the mean
of the truncated multivariate normal distribution denoted by TN , 
, the
covariance matrix, L is the lower bound, H is the upper bound and R � D�
is a q � (n+ k � 1)m" matrix.
Using the model properties to translate the restrictions on Y into restric-

tions on the shocks, the expression above implies that

R" � TN
�
��D �Y ;
; [r; r]

�
where , r � L � D �Y and r � H � D �Y are q � 1 vectors. We assume that
R (�) is of rank q � h � (n+ k � 1)m".

4.1 Decomposition of shocks under conditioning

Because in general q < h, the covariance matrix of " conditional on the
restriction will be singular. It is possible, however, to partition the space of "
into disturbances that are crucial for meeting the restrictions and those that
are not6. Consider the decomposition

" =M1
1 +M2
2, with 
1 � N (0; Ih�q) (4)

M1 is a h� (h� q) matrix chosen to be an orthonormal basis for the null
space of R, that is

M1 =
�
X 2 RhjRX = 0 ^X 0X = I

	
6Thanks to Dan Waggoner at the Atlanta Fed for suggesting this approach.
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M2, which is h� q, could be chosen either as an orthonormal basis of the
null space of M 0

1 or the orthonormal basis for the column space of R
0. In

both cases, RM2 will be invertible so that the restriction above simpli�es to


2 � TN
n
(RM2)

�1 ���D �Y
�
; (RM2)

�1
 (M 0
2R

0)
�1
; [�low; �high]

o
with �low � (RM2)

�1 r (�) and �high � (RM2)
�1 r (�), to vectors of dimension

q � 1.
We are interested in characterizing the distribution of ", given the restric-

tions, and thereby that of the conditional forecasts Y . The derivations above
show that in order to get " that satis�es the restrictions, one can make inde-
pendent draws for 
1 and combine them, using equation (4), with draws from
a truncated normal distribution for 
2. Then with " in hand, the next step
is simply to use equation (3) in order to make forecasts for Y . In particular,
we have the following conditional distributions for " and for Y

p ("j�;
; L;H; �) = N [M2E
2;M1M
0
1 +M2V (
2)M

0
2]

p (Y j�;
; L;H; �) = N
�
�Y + �M2E
2;� (M1M

0
1 +M2V (
2)M

0
2) �

0�
Hard conditioning Here we consider the case where L = H, implying
that r� (�) = r (�) = r (�). The set of conditions in the constraint can then
be re-written as:

R" = r�

In this case,

2 = (RM2)

�1 r�

and the distribution of " is as follows

E ("j�;
; L;H; �) =M2 (RM2)
�1 r�, and V ("j�;
; L;H; �) =M1M

0
1

Proposition 1 Under hard conditions, the estimator for "̂ � E ("j�;
; L;H; �)
is equal to R0 (RR0)�1 r� and has the smallest variance among all linear esti-
mators in r�.
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The proof of the proposition is given in the appendix. This alternative
formula, "̂ = R0 (RR0)�1 r�, of the estimator is the one presented in Waggoner
and Zha (1999). On the assumption that " is normally distributed, we can
compute a compatibility test along the lines of Guerrero and Peña (2000).
In particular, the statistic K = r0 (RR0)�1 r follows a �2 with q degrees of
freedom. Such a test can be useful to gauge whether the dynamics of the
model is at odds with the restrictions or not.

Soft and no conditioning When 
 and � are unknown, they can simply
be replaced by their theoretical counterparts given by the model. That is

̂ = RR0 and �̂ = D �Y . In that case, we have simple expressions for 
2

7.


2 � TN f0; I; [�low; �high]g

with all the elements in the 
2 �
�

21; 
22; :::; 
2q

�0
vector being independent

of each other. This independence of the 
2 elements means that, no Gibbs
sampling or other multivariate sampling procedure is required for computing
the distribution. For i = 1; 2; :::; q, we have

E (
2ij
2i 2 [�1i; �2i]) = �
� (�2i)� � (�1i)

� (�2i)� � (�1i)

V (
2ij
2i 2 [�1i; �2i]) = 1�
�2i� (�2i)� �1i� (�1i)

� (�2i)� � (�1i)
�
�
� (�2i)� � (�1i)

� (�2i)� � (�1i)

�2
Letting (�1i; �2i) �! (�1;1) in the soft condition case above, we have

for i = 1; 2; :::; q

E (
2i) = 0 V (
2i) = 1

It follows that

E ("jC; �) = 0 V ("jC; �) = M1M
0
1 +M2IqM

0
2

= Ik

which is the unconditional forecast case. We see that hard conditions imply
a lower variance than soft conditions, which in turn imply a lower variance
than no conditions.

7It can be veri�ed that (RM2)
�1
RR0

�
(RM2)

�1
�0
= Iq�q
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If 
 is known, however, one may need to resort to simulation to compute
the distribution for 
2 as 
 may introduce nonzero correlations among the
elements in 
2

8. In any case, those derivations show that we condition with
a continuum of degrees of uncertainty around a central tendency.

4.2 Sampling

To the extent that the conditioning information is accurate, future obser-
vations may contain some relevant information about the location of the
parameters to be estimated and those parameters are potentially better es-
timated when including that information. Formally then, we can write

yT+h = fh (yT ) (5)

where fh (�) re�ects the fact that we may need to update the estimate
of � before computing the forecasts. Hence a Gibbs sampling technique
could be designed along the lines suggested by Waggoner and Zha (1999).
In a DSGE context, this would consist in initializing an arbitrary value
of �, typically the peak (mode) of p (�jYT ) or any value randomly drawn
p (�jYT ). And then for i = 1; 2; :::; N , with N the number of simulations,
one would have to a) solve the model in reduced form and recover the start-
ing values of the unobservables, b) generate forecasts y(i)T+1; y

(i)
T+2; :::; y

(i)
T+h,

from p
�
yT+1; yT+2; :::; yT+hj�(i�1)

�
, c) augment the original data set with

the forecasts and estimate a new value of �, d) go back to a). But this Gibbs
sampling algorithm might be infeasible due to several di¢ cult and expen-
sive steps involved in the process of estimating DSGE models and using the
estimates for computing forecasts9. One could potentially circumvent this
problem by adopting a less computationally intensive method of estimation
such as GMM, but this would come at the cost of having to select only a few
moments of the variables.

8There are di¤erent sampling algorithms for the multivariate truncated normal distri-
bution, see for instance Geweke (1991) or Rodriguez-Yam et al. (2004).

9The �rst step, which consists of �nding the peak of the distribution of the parameters
typically implies evaluating the likelihood function or the posterior at various admissible
vectors of parameters in the parameter space. At each such evaluation, the steady state
of the model has to be found and the model has to be solved. Once the peak is found, the
posterior distribution has to be constructed through long simulations that are required to
compute an unknown distribution.
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The approach suggested here involves estimating the posterior distribu-
tion of the parameters only once, that is using only the information available
up to period T and leaving open the possibility of computing forecasts based
on partially or totally calibrated models. In this way, forecasts can be based
on calibration, prior draws, posterior draws or even draws around the mode.
The estimated (and or calibrated) parameters are then assumed to remain
invariant to additional information10. In this case, the sampling algorithm is
the following:
For i = 1; 2; :::N

1. draw �(i) from a chosen distribution (calibration, prior, posterior, mode).

2. Solve the model for matrices A, B,M1,M2, R and r� (or r (�) and r (�)
where it applies), and recover the starting values for the unobservable
variables by the Kalman smoother

3. draw 
1 from N (0; Ik�q), and draw 
2 if necessary

4. Construct a draw of "(i) and generate forecasts
n
y
(i)
T+1; y

(i)
T+2; :::; y

(i)
T+h

o
.

The generated sequence
n
y
(1)
T+1; y

(1)
T+2; :::; y

(1)
T+h; :::; y

(N)
T+1; y

(N)
T+2; :::; y

(N)
T+h

o
con-

stitute the distribution of the conditional forecasts.

5 Application to the Lubik Schorfheide (2007)
model

5.1 The Lubik-schorfheide model

The various applications considered are based on the Lubik and Schorfheide
(2007) (LS07) model. It is a small scale open economy DSGE model in
Aggregate output (yt), CPI in�ation(�), nominal interest rate(Rt), terms of
trade (qt), exogenous world output (y�t ), potential output in the absence of
nominal rigidities (�yt), growth rate of the underlying technological progress
(zt) and exchange rate (et).

10This is mostly a simplifying assumption. It might well be the case that over the
forecasting horizon, the conditioning variables take on values that are far away from the
process having generated the observations up to the initial conditions for the forecasts.
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The main equations given in (6) include a demand equation, a Phillips
curve, an equation de�ning domestic in�ation as a function of the exchange
rate, terms of trade and foreign in�ation, a monetary policy reaction function
and an equation for potential output.

yt = Etyt+1 � [� + � (2� �) (1� �)] (Rt � Et�t+1)� �zzt
�� [� + � (2� �) (1� �)]Et�qt+1 +

�(2��)(1��)
�

Et�y
�
t+1

�t = �Et�t+1 + ��Et�qt+1 � ��qt +
�

�+�(2��)(1��) (yt � �yt)

�t = �et + (1� �)�qt + ��t

Rt = �RRt�1 + (1� �R) [ 1�t +  2yt +  3�et] + "Rt

�yt = ��(2��)(1��)
�

y�t

(6)

Technological progress, foreign output, terms of trade and foreign in�a-
tion are exogenous AR(1) processes

zt = �zzt�1 + "z;t y�t = �y�y
�
t�1 + "y�;t

�qt = �q�qt�1 + "q;t ��t = �y��
�
t�1 + "��;t

(7)

As for the parameters, � is the intertemporal substitution elasticity; 0 <
� < 1 is the import share, � > 0 is a function of underlying structural
parameters, such as labor supply and demand elasticities and parameters
capturing the degree of price stickiness.  1,  2 and  3 and monetary policy
parameters as described by the Taylor rule. See Lubik and Schorfheide (2007)
for more details.

5.2 The conditional forecast exercise and the data

In order to gauge the potential usefulness of conditioning on a variable in im-
proving the predictions of other variables, we will in turn use the observed ex-
change rate, the interest rate, terms of trade and in�ation as the conditioning
information. Although in practice, accurate information on the conditioning
variables may not be available, conditioning on actual realizations helps us
analyze the possible dangers of conditioning. In addition, conditioning on
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inaccurate information would just strengthen the results of the paper, that
generalize to larger models and di¤erent conditioning information11. More to
the point, while it is hard to guess or obtain accurate values of an unrealized
conditioning variable, it is far much easier to guess a range for the variable.
With the soft conditioning technique presented we can make that range as
wide as we want, re�ecting the uncertainty we have about the location of the
conditioning variable and so the exercise is not restrictive.
The parameters of the LS07 model are estimated recursively. Then con-

ditional forecasts are computed for various degrees of uncertainty. For sim-
plicity uncertainty is measured by the standard deviation of the conditioning
variable over history12. We consider 3 degrees of uncertainty: 0, 50, and
100% , where a value of 0 implies hard conditioning, while a value of 100
implies unconditional forecasts. We repeat the exercise for 1, 4, 8, and 12
periods anticipated. Note that when the number of periods is 1, anticipated
and unanticipated events yield the same results.
The data used for estimation and in the subsequent analysis are Canadian

data, available from Schorfheide�s website. The vector of observables com-
prises Annual interest rate (RdataAt ), annual in�ation (�

data
At ), quarterly output

growth (�Y data
t ), exchange rate changes (�edatat ) and terms of trade changes

(�qdatat ). The dataset runs from 1970Q1 to 2002Q4 and unlike in the Lubik-
Schorfheide paper, we use uniform priors for all the parameters. The sample
from 1970Q1 to 1994Q1 is used for the �rst estimation. We demean the data
prior to estimation and focus the estimation on the parameters that control
the dynamics of the system. The means are added back to the forecast be-
fore computing the forecast errors. All the results are based on the estimated
posterior mode of the parameters.

Measures of forecast accuracy The measures of forecast accuracy we
consider are the traditional mean absolute error (MAE) and the root mean
square error (RMSE) presented in equation (8).

11One can condition on market information as done by Andersson et al. (2008), or on
forecasts coming from other models as in Benes et al. (2008).
12Andersson et al. (2008) suggest ways of generating a prior uncertainty that can be used

in computing density forecasts, including using past forecast errors and or the properties
of the model at hand as discussed in the previous section. But there is no perfect way of
generating the uncertainty measure to use for the computation of soft-conditional forecats.
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MAEi (h) =
1

Nh

NhX
d=1

jei;d (h)j

RMSFEi (h) =

vuut 1

Nh

NhX
d=1

e2i;d (h) (8)

We also consider a multivariate measure of point forecast accuracy based
on the scaled h-step-ahead Mean Squared Error matrix (see equation (9))
used by Adolfson et al. (2005)


M (h) =
1

Nh

NhX
d=1

~e�;d (h) ~e
0
�;d (h) , with ~e (h) �M� 1

2 e (h) (9)

M is a scaling matrix that accounts for the di¤ering scales of the fore-
casted variables and for the fact that the time series may be more or less in-
trinsically predictable in absolute terms. In this case the measure of forecast
accuracy will be the log determinant statistic ln (j
M (h)j), which is invariant
to the choice of the scaling matrix. Note that since the conditioning vari-
able is matched exactly, its forecast error is 0. In that case the determinant
j
M (h)j = 0 even if the forecast errors for the other variables are di¤erent
from 0. For that reason, we remove the row and column corresponding to
the conditioning variable before computing the statistic.

6 Results

The question we try to answer here is if the agents in the LS07 economy had
known in advance and with various degrees of uncertainty, the shocks that
would push their decisions towards the observed outcomes for each condi-
tioning variable, how accurate would be the predictions of the model for the
other variables. Before looking at the forecast performance, it is instructive
to compare the correlations implied by the model to those implied by the
data. The intuition is that the conditioning information is potentially use-
ful for improving the forecasts of other variables of interest if the model is
able to capture the relationship linking those variables. Table 1 displays the
correlations between the variables. Despite, missing the magnitude, most of
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Model
DY_OBS PAI_OBS R_OBS DQ DE

DY_OBS 1
PAI_OBS -0.2538 1
R_OBS -0.178 0.2802 1
DQ 0.0159 0.145 -0.1464 1
DE -0.1133 -0.1679 0.1892 -0.5351 1
Data

DY_OBS PAI_OBS R_OBS DQ DE
DY_OBS 1
PAI_OBS -0.2249 1
R_OBS -0.2422 0.5518 1
DQ 0.0987 0.1418 -0.1004 1
DE -0.0579 -0.2150 -0.0256 -0.3421 1

Table 1: Correlation in the model vs Correlations in the data

the correlations have the correct sign. Notable exceptions are the correla-
tions between output growth (DY_OBS) and exchange rate changes (DE)
and the correlation between the interest rate (R_OBS) and the exchange
rate. This tells us that having information on exchange rate changes may
not improve or may even worsen our forecats for output growth and interest
rate and vice-versa.
We now turn to assessing the forecast performance. Given that RMSE

and MAE lead to qualitatively similar results, only the results from RMSE
are reported for reasons of brevity. Figures 2 to 5 present the results of the
conditional forecast exercise in terms of RMSE (columns 1 to 5) for output
growth, in�ation, interest rate, terms of trade changes, exchange rate changes
respectively and in terms of log determinant, our overall measure of forecast
accuracy. Each row represents the e¤ect of conditioning on the variable
whose name is on the left. The plots are arranged such that the variables on
the main diagonal represent both the conditioning variable and the e¤ects
of conditioning from the same variable. By construction then, given that
the conditioning information is always accurate, hard conditions will always
outperform soft conditions, which in turn will be better than no conditions.
Starting the analysis of the results with the case of unanticipated shocks

(�gure 2), the �rst row reveals that there are potential gains in terms of bet-
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ter forecasts for in�ation from conditioning on output growth as the RMSE
for in�ation are lower for hard and soft conditions than for unconditional
forecasts. The gains, however, from having a very accurate information on
output growth are not substantial since hard conditions do not signi�cantly
outperform soft conditions. The �rst row also reveals some gains in terms
of interest rate forecasts, but only towards the end of the forecasting period.
This suggests that if the interest rate reacts to output growth, it probably
does so with a delay. The same row shows that accurate information on out-
put growth worsens the forecasts for exchange rate changes and interestingly,
those results echo the implications we drew from table 1.
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The second row in �gure 2 shows a strong link between in�ation and
interest rate as conditioning is superior to no conditioning. And here the
gains seem to be increasing with the forecast horizon. In�ation also helps
in the forecasts of both terms of trade changes and exchange rate changes
and again in sync with the results from table 1. Not surprisingly then, the
verdict from the log determinant statistics in the last column is in favor of
conditioning.
Although information on output growth helped predict in�ation in the

�rst row, in the second row information on in�ation does not help predict
output growth despite the fact that the model captures the correct sign of
the correlation between the two variables. This warns us that even in cases
where the model captures the correct sign of the correlation, we cannot say
a priori in which direction the causality goes.
Information on interest rate may help predict in�ation as shown in the

third row. However, in this case, soft conditions are better than hard con-
ditions, which are too tight. Conditioning on terms of trade changes (see
row number four), helps predict output growth as well as in�ation and ex-
change rate changes and here again, soft conditions dominate hard conditions.
The link between terms of trade changes and exchange rate changes remains
strong when the conditioning variable is exchange rate changes, which also
helps predict in�ation albeit not signi�cantly. Two other strong links are
noticeable: the one between in�ation and interest rate on the one hand and
the one between terms of trade changes and in�ation on the other.
In all of the other plots in �gure 2, unconditional forecasts are not uni-

formly dominated by conditional forecasts which in some cases even worsen
the forecasts. Put di¤erently, in the presence of a misspeci�ed model hard
conditions do not necessarily dominate soft conditions even if the condition-
ing information is accurate. This is seen most starkly for instance in the RM-
SEs of output growth conditional on in�ation or on exchange rate changes,
and terms of trade and exchange rate changes conditional on the interest rate.
This also suggests that being able to apply di¤erent degrees of soft condi-
tioning may help gauge, in a speci�c model, how tight the cross-equation
restrictions are and thereby point to the variables whose speci�cation should
be improved.
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So far we have assumed that the agents did not observe in advance the
sequence of shocks beyond one period ahead. But as discussed in the in-
troduction, if conditioning information is available with the potential of im-
proving forecasts, rational agents will exploit that information. The natural
next step then is to extend the number of periods for which the agents in the
model can observe shocks. The �rst extension considered is 4 periods ahead.
The results of the conditional forecast exercise with 4 anticipated periods
ahead are displayed in �gure 3. The forecasting performance deteriorates
substantially. Output growth in the �rst row, continues to help predict the
interest rate towards the end of the forecast horizon. In�ation in the sec-
ond row helps predict interest rates too. The two-way relationship between
terms of trade and exchange rate changes is maintained and in particular,
the RMSEs for exchange rate changes conditional on terms of trade changes
remind us that even if the information is accurate, hard conditioning may be
too tight.
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Allowing agents to anticipate shocks 8 periods ahead, the results are
somewhat similar to those for 4-step ahead anticipated shocks (see �gure
4). Output growth still helps to predict interest rate changes, while the
explanatory power of in�ation on the interest rate continues to be strong,
just as the link between exchange rate changes and terms of trade changes.
The explanatory power of interest rate on output growth becomes more and
more important as agents are allowed to observe future shocks beyond one
step ahead and this is con�rmed also for 12-step ahead anticipated shocks
(�gure 5).
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All in all, looking at the results of the log determinant statistics from
�gures 2 to 5, conditioning on output growth in the LS07 model will tend
to worsen the forecasts for other variables in the �rst periods of the forecast
horizon, with the exception of the interest rate but only when agents do not
anticipate shocks beyond one period. Information one in�ation helps improve
the forecasts of interest rates and those forecasts seem to improve as the
horizon for which agents can anticipate future shocks increases. Forecasting
on the interest rate does not seem to improve the forecasts for other variables
in this model. Information on terms of trade has a positive impact on the
forecasts for the exchange rate and vice-versa. And so, although the model
is misspeci�ed, it does capture some of the correlations between some of the
conditioning variables (like in�ation) and the other variables (like interest
rate), such that information on the conditioning variable implies improved
forecasts for some of the other variables in the model. This suggests that
even if a model is misspeci�ed along one dimension, it may still be useful in
explaining the behavior of some other variables.
It is di¢ cult to trace the exact reasons why, except for in�ation condi-

tional interest rate, conditioning information does not signi�cantly improves
forecasts as agents are allowed to know more about shocks beyond one step
ahead. It might be the case that the observed data are not generated with the
agents having information about the future. In any case, it is well possible
to imagine environments in which the anticipated shocks assumption would
be more relevant than the unanticipated shocks assumption. For instance
when legislative and implementation lags in �scal policy ensure that private
agents receive clear signals about the tax rates they face in the future. In
that case, as discussed by Leeper et al. (2008), an econometrician who fails
to align his information set with the information set of the agents will get
distorted inferences about the e¤ects of tax policies.

7 Conclusion

The paper suggests one way to inform the forecasts of a DSGE model in
the presence of conditional information. It argues that conditioning does not
necessarily improve the forecasting performance of a DSGE model and in
some cases it might even deteriorate forecast accuracy. This happens when
the dynamics of the model is at odds with the data or when the correlation
between the conditioning information and the other variables in the model
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is insigni�cant. On the other hand, in the presence of good conditioning
information, even a misspeci�ed DSGE model can still have its forecasting
performance improved if it adequately nails the dynamics of the data or the
correlation between the conditioning information and variables of interest. In
the presence of model misspeci�cation, hard conditioning is not necessarily
the best way to go, no matter how accurate the conditioning information is.
Tight cross-equation restrictions implied by the model that are forced upon
the forecasts in hard conditioning can be relaxed with soft conditioning.
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A Generalized solution

Consider the model

E [��1yt�1 +�0yt +�1yt+1 +	"t] = 0

We use an undetermined coe¢ cients method to guess a solution of the
form

yt = Ayt�1 +

nX
j=1

Bj"t+j (10)

This guess implies that A solves matrix polynomial

�1A
2 +�0A+��1 = 0

Now, conditional on A, the other parameter matrices are given by

B1 = � [�1A+�0]�1	

Bj =
�
� [�1A+�0]�1�1

�j�1
B1 j = 2; :::; n

The solution for the Bj depends not only on the reduced form solution
through A, but also directly on the structural form with matrices �1 and
�0. When n = 1, the solution is that of any rational expectation model as
in equation (2). When n > 1, the solution of yt depends not only on shocks
happening in period t, but also in the anticipated shocks up to n periods
into the future. This solution is general in the sense that it allows for the
possibility of some shocks being unanticipated and some others not.

B Proof of the proposition

Proof. We �rst show that R0 (RR0)�1 r� has the smallest variance among all
linear estimators. If "̂ is linear in r�, then it can be written as "̂ = Ar� = AR".
We then have that "̂� " = (AR� I) " and the variance of this expression is
given by: var ("̂� ") = (AR� I) �" (AR� I)0. Minimizing this expression
for A, we �nd A = �"R0 [R�"R0]

�1. Since the covariance matrix �" of " is
the identity matrix, the result follows.
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We now turn to showing that R0 (RR0)�1 r� = M2 (RM2)
�1 r�. Using

the singular value decomposition of R, we have R = USM 0, where U and
M are unitary matrices satisfying U 0U = I and M 0M = I, and S is a
diagonal matrix with the singular values of R on its diagonal. M = [M2;M1]
where M2 is an orthonormal basis for the column space of R and M1 is the
null space of R. This implies that M2 is associated with nonzero singular
values of R, while M1 is associated with zero singular values. It follows that
R = USM 0 = U [D; 0] [M2;M1]

0 = UDM 0
2.

Now
R0 (RR0)�1 r� = [UDM 0

2]
0 �R [UDM 0

2]
0��1 r�

= M2D
0U 0 (RM2D

0U 0)�1 r�

= M2D
0U 0 (D0U 0)�1 (RM2)

�1 r�

= M2 (RM2)
�1 r�

.
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