Consider the order latex($p$) VAR representation for the latex($1\times m$) vector of observed variables latex($y_t$):

\[
y_{t}=\sum_{k=1}^{p} y_{t-k} \mathbf{A}_{k} + u_t
\]

where latex($u_t\sim \mathcal N\left( 0,\Sigma_u\right)$). Let latex($z_t$) be the latex($mp\times 1$) vector latex($\left[y_{t-1}',...,y_{t-p}'\right]'$) and define latex($\mathbf{A}=\left[\mathbf A_1',...,\mathbf A_p'\right]'$), the VAR representation can then be written in matrix form as:

\[
Y=Z\mathbf A +\mathcal U
\]

where latex($Y = (y_1',\dots,y_T')'$), latex($Z = (z_1',\dots,z_T')'$) and latex($\mathcal U = (u_1',\dots,u_T')'$).

Dummy observations prior for the VAR can be constructed using the VAR likelihood function for latex($\mathcal T = [\lambda T]$) artificial data simulated with the DSGE latex($\left( Y^{\ast },Z^{\ast}\right)$), combined with diffuse priors. The prior is then given by:

\[
p_{0}\left( \mathbf A, \Sigma \mid Y^*,Z^* \right)
\propto
\left\vert \Sigma \right\vert ^{-\frac{\lambda T+m+1}{2}}e^{-\frac{1}{2}tr\left[ \Sigma^{-1}\left(
{Y^*}'Y^*-\mathbf{A}'{Z^*}'Y^*-{Y^*}'Z^*\mathbf A+ \mathbf A'{Z^*}'Z^*\mathbf A \right) \right] }
\]

implying that latex($\Sigma$) follows an inverted Wishart distribution and latex($\mathbf A$) conditional on latex($\Sigma$) is gaussian. Assuming that observables are covariance stationary, Del Negro and Schorfheide use the DSGE theoretical autocovariance matrices for a given latex($n\times 1$) vector of model parameters latex($\theta$), denoted latex($\Gamma_{YY}\left( \theta \right)$), latex($\Gamma_{ZY}\left( \theta \right)$), latex($\Gamma_{YZ}\left( \theta\right)$), latex($\Gamma_{ZZ}\left( \theta \right)$) instead of the (artificial) sample moments latex(${Y^*}'Y^*$), latex(${Z^*}'Y^*$), latex(${Y^*}'Z^*$), latex(${Z^*}'Z^*$). In addition, the latex($p$)-th order VAR approximation of the DSGE provides the first moment of the prior distributions through the population least-square regression:

    \begin{equation}%\tag{P1a}%\label{prior1a}
        \mathrm A^*( \theta ) = \Gamma_{ZZ}\left( \theta
        \right)^{-1}\Gamma_{ZY}\left( \theta \right)
    \end{equation}
    \begin{equation}%\tag{P1b}%\label{prior1b}
        \Sigma^*(\theta) = \Gamma_{YY}(\theta) -\Gamma_{YZ}(\theta)
        \Gamma_{ZZ}\left( \theta \right)^{-1}\Gamma_{ZY}\left( \theta \right)
    \end{equation}

Conditional on the deep parameters of the DSGE latex($\theta $) and latex($\lambda$), the priors for the VAR parameters are given by:

latex error! exitcode was 1 (signal 0), transscript follows:

This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2019/dev/Debian) (preloaded format=latex)
entering extended mode
(./latex_77809d21991cf5da09c614d5bd41a29d9ed68a24_p.tex
LaTeX2e <2018-12-01>
(/usr/share/texlive/texmf-dist/tex/latex/base/article.cls
Document Class: article 2018/09/03 v1.4i Standard LaTeX document class
(/usr/share/texlive/texmf-dist/tex/latex/base/size12.clo))
(/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty)
No file latex_77809d21991cf5da09c614d5bd41a29d9ed68a24_p.aux.

! LaTeX Error: Environment split undefined.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help.
 ...                                              
                                                  
l.8  \begin{split}
                  
! Misplaced alignment tab character &.
l.9 ...c} \mathbf A \mid \Sigma ,\theta, \lambda &
                                                  \sim \normal{\mathrm{vec}\...

! Undefined control sequence.
l.9 ... \mid \Sigma ,\theta, \lambda &\sim \normal
                                                  {\mathrm{vec}\mathbf A^*(\...

! Misplaced alignment tab character &.
l.11     \Sigma \mid \theta,\lambda &
                                     \sim \mathcal{IW}\left(\lambda T \Sigma...


! LaTeX Error: \begin{equation} on input line 7 ended by \end{split}.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help.
 ...                                              
                                                  
l.13  \end{split}
                 

Overfull \hbox (36.01146pt too wide) detected at line 14
[]\OT1/cmr/bx/n/12 A \OMS/cmsy/m/n/12 j \OT1/cmr/m/n/12 ^^F\OML/cmm/m/it/12 ; ^
^R; ^^U \OMS/cmsy/m/n/12 ^^X [][][] \OT1/cmr/m/n/12 ^^F \OMS/cmsy/m/n/12 j \OML
/cmm/m/it/12 ^^R; ^^U \OMS/cmsy/m/n/12 ^^X [] []
[1] (./latex_77809d21991cf5da09c614d5bd41a29d9ed68a24_p.aux) )
(see the transcript file for additional information)
Output written on latex_77809d21991cf5da09c614d5bd41a29d9ed68a24_p.dvi (1 page,
 736 bytes).
Transcript written on latex_77809d21991cf5da09c614d5bd41a29d9ed68a24_p.log.

where latex($\Gamma_{ZZ}(\theta)$) is assumed to be non singular and latex($\lambda \geq \frac{mp+m}{T}$) for the priors to be proper\footnote{Note that it

\textit{a priori} density of $\mathbf A$ is defined by $n+1$ parameters ($\theta$ and $\lambda$), which is likely to be less than $mp$ (the VAR number of parameters). If we have a one-to-one relationship (no identification issues) between $(\theta,\lambda)$ and $\mathbf A$ it will be a good idea to estimate $(\theta,\lambda)$ instead of $\mathbf A$, \textit{ie} to estimate fewer free parameters. To do so, \cite{DS2004} complete the prior by specifying a prior distribution over the structural model's deep parameters: $p_0(\theta)$. We still have to set the weight of the structural prior, $\lambda$. \citeauthor{DS2004} choose the value of $\lambda$ that maximizes the marginal density. They estimate a limited number of DSGE-VAR models with different values of $\lambda$. For each model they also estimate the marginal density and select the model (\textit{ie} the value of $\lambda$) with highest marginal density. In the present paper, we estimate directly $\lambda$ as another parameter, instead of doing a loop over the values of this parameter\footnote{In this regard, the approach followed by

$\lambda$, which is assumed to be independent from $\theta$. Finally, the DSGE-VAR model has the following prior structure: \begin{equation}\tag{P3}\label{prior3} p_0\left( \mathbf A,\Sigma, \theta, \lambda \right) = p_0\left( \mathbf A, \Sigma \mid \theta ,\lambda \right) \times p_0\left( \theta \right) \times p_0\left( \lambda \right) \end{equation} where $p_0\left(\mathbf A, \Sigma \mid \theta ,\lambda \right)$ is defined by [\ref{prior1a},\ref{prior1b}] and \equaref{prior2}.}\newline

\par{The posterior distribution, may be factorized in the following way: \begin{equation}\tag{Q3}\label{posterior1} p\left( \mathbf A, \Sigma , \theta , \lambda \mid \mathcal Y_T\right) = p\left(\mathbf A, \Sigma \mid \mathcal Y_T, \theta, \lambda\right) \times p\left( \theta ,\lambda \mid \mathcal Y_T\right) \end{equation} where $\mathcal Y_T$ stands for the sample. A closed form expression for the first density function on the right hand side of \equaref{posterior1} is available. Conditional on $\theta $ and $\lambda$, [\ref{prior1a},\ref{prior1b}] and \equaref{prior2} define a conjugate prior for the VAR model, so its posterior density has to belong to the same family: the distribution of $\mathbf A$ conditional on $\Sigma$, $\theta$, $\lambda$ and the sample is matric-variate normal, and the distribution of $\Sigma$ conditional on $\theta$, $\lambda$ and the sample is inverted Wishart. More formally, we have: \begin{equation}\tag{Q2}\label{posterior2}

(\lambda+1)T-mp-m\right)

\end{equation} where: \begin{subequations}%\tag{Q1}\label{posterior3}

\end{subequations} with: \[ V(\theta,\lambda) = \lambda T~\Gamma_{ZZ}(\theta) +Z'Z \] Not surprisingly, we find that the posterior mean of $\mathbf A$ is a convex combination of $A^*(\theta)$, the prior mean, and of the OLS estimate of $\mathbf A$. When $\lambda$ goes to infinity the posterior mean shrinks towards the prior mean, \textit{ie} the projection of the DSGE model onto the VAR($p$).\newline We do not have a closed form expression for the joint posterior density of $\theta $ and $\lambda$ (the second term on the right hand side of \equaref{posterior1}). So the posterior distribution of $(\theta,\lambda)$ is recovered from an MCMC algorithm, as described in \cite[appendix B]{DS2004}, except that we do estimate $\lambda$ as the deep parameters $\theta$.\footnote{This can be done with

\par{All in all, this estimation procedure allows to select the

\par{Notice that, when $\lambda$ is closer to its lowest possible