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1 Introduction

The aim of this document is to describe an algorithm for turning the state space setup of
Dynare into one that is suitable for obtaining the partial information setup that conforms
to that of Pearlman et al. (1986). The state space setup for Dynare is based on writing
an RE system as:

A0Yt+1,t + A1Yt = A2Yt−1 + But (1)

where A0 is not of full rank and ut is a vector containing instruments wt and shocks
εt. Currently estimation within Dynare assumes that agents have full information about
the system, so that a calculation is done which solves (1) under full information. The
estimation step then assumes that econometricians have only a limited information set,
and processes this via the Kalman filter to obtain the likelihood function for a given set of
parameters. In reality, agents too have a partial information set (which may or may not
coincide with that of the econometricians) given by

mt = LYt + vt (2)

where typically there is no observation error (vt = 0) and L picks out most of the economic
variables, typically excluding capital stock, Tobin’s q and shocks.

The Pearlman et al. (1986) setup is given by
[

zt+1

xt+1,t

]
=

[
A11 A12

A21 A22

] [
zt

xt

]
+

[
C

0

]
εt+1 +

[
D1

D2

]
wt (3)

with agents’ measurements given by

mt =
[

K1 K2

] [
zt

xt

]
+ vt (4)

and these can be solved together to yield a reduced-form system. This can then be
processed via the Kalman filter to obtain the likelihood function as above.

The next section describes an algorithm for converting the state space (1), (2) under
partial information to the form (3), (4).



2 Conversion to Pearlman et al. (1986) Setup

In order to reduce the amount of notation we impose a particular way of incorporating
shocks into the system. Suppose a particular shock m̄t affects an equation of the system,
where m̄t+1 = ρm̄t + ūt+1. Redefine mt = m̄t+1, ut = ūt+1, so that now the relevant
equation of the system is affected by mt−1, and the law of motion of the shock is described
within the matrices A1, A2, B. This makes no difference to the Kalman filter below or to
system estimation, but means that for simulation purposes, a shock to ut at time 0 will
have an effect that is diminished by ρ compared with a shock to ūt at time 0.

To repeat, all shocks m̄t to the system at time t are dated as though they were mt−1.
The procedure for conversion to a form suitable for filtering is then as follows:

1. Obtain the singular value decomposition for matrix A0: A0 = UDV T , where U, V

are unitary matrices. Assuming that only the first m values of the diagonal matrix
D are non-zero, we can rewrite this as A0 = U1D1V

T
1 , where U1 are the first m

columns of U , D1 is the first m×m block of D and V T
1 are the first m rows of V T .

2. Multiply (1) by D−1
1 UT

1 , which yields

V T
1 Yt+1,t + D−1

1 UT
1 A1Yt = D−1

1 UT
1 A2Yt−1 + D−1

1 UT
1 But (5)

Now define xt = V T
1 Yt, st = V T

2 Yt, and use the fact that I = V V T = V1V
T
1 + V2V

T
2

to rewrite this as:

xt+1,t + D−1
1 UT

1 A1(V1xt + V2st) = D−1
1 UT

1 A2(V1xt−1 + V2st−1) + D−1
1 UT

1 But (6)

3. Multiply (1) by UT
2 which yields

UT
2 A1Yt = UT

2 A2Yt−1 + UT
2 But (7)

which can be rewritten as

UT
2 A1(V1xt + V2st) = UT

2 A2(V1xt−1 + V2st−1) + UT
2 But (8)

4. Typically UT
2 A1V2 is invertible, which means that we can rewrite (6) and (8) as




I 0 0
0 I 0
F 0 I







st

xt

xt+1,t


 =




G11 G12 −G13

0 0 I

G31 G32 −G33







st−1

xt−1

xt


 +




H1

0
H3


ut (9)

where

G11 = (UT
2 A1V1)−1UT

2 A2V2 G12 = (UT
2 A1V1)−1UT

2 A2V1 G13 = (UT
2 A1V1)−1UT

2 A1V2

(10)
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G21 = D−1
1 UT

1 A2V2 G22 = D−1
1 UT

1 A2V1 G23 = D−1
1 UT

1 A1V2 (11)

H1 = (UT
2 A1V1)−1UT

2 B H3 = D−1
1 UT

1 B F = D−1
1 UT

1 A1V2 (12)

which can be further rewritten as



st

xt

xt+1,t


 =




G11 G12 −G13

0 0 I

G31 − FG11 G32 − FG12 −G33 + FG13







st−1

xt−1

xt


+




H1

0
H3 − FH1


ut

(13)

5. The measurements mt = MYt + vt can be written in terms of the states as mt =
M(V1xt + V2st) + vt. To write the system in a form which corresponds to that of
Pearlman et al. (1986) we need to write the measurements in terms of the forward-
looking variables xt and in terms of the backward-looking variables st−1, xt−1. We
do this by substituting for st from (13); but this introduces a term in ut into the
expression, and Pearlman et al. (1986) assume that shock terms in the dynamics
and in the measurements are uncorrelated with one another. To remedy this, we
incorporate εt into the predetermined variables, but we can retain wt as it stands.

Defining 


H1

0
H3 − FH1


ut =




P1

0
P3


 εt +




N1

0
N3


wt (14)

we may rewrite the dynamics and measurement equations in the form:



εt+1

st

xt

xt+1,t




=




0 0 0 0
P1 G11 G12 −G13

0 0 0 I

P3 G31 − FG11 G32 − FG12 −G33 + FG13







εt

st−1

xt−1

xt




+




I 0
0 N1

0 0
0 N3




[
εt+1

wt

]

(15)

mt =
[

LV2P1 LV2G11 LV2G12 LV1 − LV2G13

]



εt

st−1

xt−1

xt




+LV2N1wt+vt (16)

Thus the setup is as required, with the vector of predetermined variables given by [ε′t s′t−1 x′t−1]
′,

and the vector of jump variables given by xt. Note that there is an issue not covered by
Pearlman (1992), namely that the instrument wt is part of the measurement equation;
if we assume that the instruments are observed, then there is no problem to modify the
theory.

There is also a minor issue that the states of the system are not readily identifiable, as
they will be linear combinations of the identifiable variables, which may make debugging
of errors more problematic.
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3 Passing the Model to ACES

The model setup in this form is passed from Dynare to ACES where it is in Form 2:
[

zt+1

Etxt+1

]
= A

[
zt

xt

]
+ Dwt +

[
C

0

]
ut+1 (17)

Yt + E2

[
zt

xt

]
+ E5wt = 0 (18)

where wt are the instruments and ut are the shocks. Note that in ACES notation, B =
I,AB = 0, E1 = I, E4 = 0, E3 = 0.

For the partial information setup we also require the measurements (2):

mt = LYt + vt (19)

N.B. There is one difference here, namely that there is a shock vt to the measurement
Yt. This shock vt could also be incorporated into the state vector, by having an additional
predetermined variable vt+1. Also Yt plays a different role here from what it usually does
in ACES. In ACES, it represents static relationships that are included in the dynamics,
whereas here Yt represents what is observed by agents and policymakers.

The matrices above then correspond to those of the previous section via:

A =




0 0 0 0
P1 G11 G12 −G13

0 0 0 I

P3 G31 − FG11 G32 − FG12 −G33 + FG13




D =




0
N1

0
N3




C =




I

0
0
0




(20)
E2 = −

[
V2H1 V2G11 V2G12 V1 − V2G13

]
E5 = −V2N1 (21)

4 Impulse Response Functions

Full Information Case:
It is easy to see that the impulse response functions can be calculated from

zt+1 = (A11 −A12N)zt + Cut+1 xt = −Nzt Yt = −E2

[
zt

xt

]
(22)

where [
N I

] [
A11 A12

A21 A22

]
= ΛU

[
N I

]
(23)

Partial Information Case: First rewrite mt as:

mt =
[

K1 K2

] [
zt

xt

]
+ vt (24)
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The reduced-form solution is then given by:

System : zt+1 = Fzt + (A− F )z̃t

+(F −A)PHT (HPHT + V )−1(Hz̃t + vt) + Cut+1 (25)

xt = −Nzt + (N −A−1
22 A21)z̃t

−(N −A−1
22 A21)PHT (HPHT + V )−1(Hz̃t + vt) (26)

Innovations : z̃t+1 = Az̃t −APHT (HPHT + V )−1(Hz̃t + vt) + Cut+1 (27)

Measurement : mt = Ezt + (H − E)z̃t + vt

−(H − E)PHT (HPHT + V )−1(Hz̃t + vt)

= Ezt,t−1 + (EPHT + V )(HPHT + V )−1(Hz̃t + vt) (28)

where F = A11−A12N A = A11−A12A
−1
22 A21 E = K1−K2N H = K1−K2A

−1
22 A21

V is the covariance matrix of the measurement errors, and P is the solution of the Riccati
equation given by

P = APAT −APHT (HPHT + V )−1HPAT + CUCT (29)

and U is the covariance matrix of the shocks to the system.
Note that to obtain the impulse response for the underlying variables Yt we use the

relationship
Yt = V1xt + V2st (30)

Noting that st = [0 I 0]zt+1, it follows that we may write

Yt = V1xt +
[
0 V2 0

](
Fzt + (A−F )z̃t + (F −A)PHT (HPHT + V )−1(Hz̃t + vt)

)
(31)

or more simply

Yt =
[
0 V2 V1

]
zt+1 (32)

4.1 Covariances and Autocovariances for the Partial Information Case

Pearlman et al. (1986) show that

cov

[
z̃t

zt

]
=

[
P P

P P + M

]
≡ P0 (33)

whereM satisfies
M = FMF T + FPHT (HPHT + V )−1HPF T (34)

If the dimension of the vector Yt is n, define Ω0 as the bottom right n × n matrix of
(P + M). Then it follows that

cov(Yt) = [ V2 V1 ]Ω0

[
V T

2

V T
1

]
≡ R0 (35)
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To calculate the autocovariances, define

Γ =

[
A(I − PHT (HPHT + V )−1H) 0

(A− F )(I − PHT (HPHT + V )−1H) F

]
(36)

Then the sequence of auto-covariance matrices of Yt are defined as follows:

E

([
z̃t+k

zt+k

]
,

[
z̃t

zt

])
≡ Pk = ΓkP0 = ΓPk−1 (37)

Defining Ωk as the bottom right n× n matrix of Pk, it follows that

cov(Yt+k, Yt) = E(Yt+kY
T
t ) = [ V2 V1 ]Ωk

[
V T

2

V T
1

]
≡ Rk (38)

These correspond to the matrices gamma y defined at the bottom of page 41 of
the Dynare User Guide. These are then use to generate autocorr, the autocorrelation
functions of the variables. Thus the autocorrelation function of the ith element of Y is
given by the sequence (R1)ii

(R0)ii
, (R2)ii

(R0)ii
, (R3)ii

(R0)ii
, ....

In addition the correlation matrix of the Yt variables is defined as

Corr = ∆R0∆T where ∆ = diag(
√

(R0)11,
√

(R0)22,
√

(R0)33, ...) (39)

5 Likelihood function calculation

Here we assume that there are no policy instruments wt and that the system is saddlepath
stable.

The Kalman filtering equation is given by

zt+1,t = Fzt,t−1 + FPtH
T (EPtH

T + V )−1et (40)

where et = mt − Ezt,t−1

Pt+1 = APtA
T + U −APtH

T (HPtH
T + V )−1HPtA

T (41)

the latter being a time-dependent Ricatti equation.
The period-t likelihood function is standard:

2lnL = −
∑

lndet(cov(et)−
∑

eT
t (cov(et))−1et (42)

where
cov(et) = (EPtH

T + V )(HPtH
T + V )−1(HPtE

T + V ) (43)

Following Pearlman et al. (1986), the system is initialised at

z1,0 = 0 P1 = P + M (44)

where P is the steady state of the Riccati equation above, and M is the solution of the
Lyapunov equation

M = FMF T + FPHT (HPHT + V )−1HPF T (45)
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6 Extension to the case of Expectations of Current Vari-

ables

Suppose that expectations (or best estimates) of current variables are included in agents’
decision-making and measurements. Then a general setup will be of the form

A0Yt+1,t + A1Yt = A2Yt−1 + A3Yt,t + But mt = LYt + MYt,t + vt (46)

To get this into Blanchard-Kahn format, we follow the same procedures as above with Yt,t

as a member of the exogenous variables, and end up with a representation of the form

[
zt+1

Etxt+1

]
=

[
A11 A12

A21 A22

][
zt

xt

]
+

[
J11 J12

J21 J22

] [
zt,t

xt,t

]
+

[
C

0

]
εt+1 (47)

mt =
[

K1 K2

] [
zt

xt

]
+

[
R1 R2

] [
zt,t

xt,t

]
+ vt (48)

Then all the equations above for filtering, likelihood calculation, IRFs are identical, with
the following altered definitions:

F = A11 + J11 − (A12 + J12)N E = K1 + R1 − (K2 + R2)N (49)

[
N I

] [
A11 + J11 A12 + J12

A21 + J21 A22 + J22

]
= ΛU

[
N I

]
(50)
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