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Itis now possible to estimate with DYNARE models with unit-roots. These models
must satisfy the following restriction: the dynamics of stochastic trends must be (log)—
linear and the dynamics of the stationary part around the stochastic trends may be
non-linear.

1 Steady state

For stationay models, DYNARE linearizes around the steady state, using the internal
function dynaresolve.m. When the dynamics of the stochastic trends doesn’t contain
a deterministic trend (when it is a pure random walk without displacement), there is an
infinity of value of § satisfying f(g) = 0 and it is possible to specify one of them in
INITVAL.

When the stochastic trends contain a deterministic trend, there is no solution to
the equationf(y) = 0. It is then necessary to provide DYNARE with a hand written
function calledfnamesteadystate.rthat returns the steady state values of the station-
ary variables and 0 for nonstationary variables when the model is linearized or 1 for
nonstationary variables when the model is log—linearized. The variables must be or-
dered in alphabetical order. See /examples/fs2@@8adystate.m for an example. This
procedure is cumbersome and we will be trying to automatize it in the future.

2 Estimation

For initializing the Kalman filter and for computing the smoother, DYNARE uses now
the algorithm described in chapter 5 of J. Durbin and S.J. Koopman (2001) and in S.J.
Koopman and J. Durbin (2003). Following the advice of these authors, we prefer it to
the augmented filter advocated by De Jong. Note that the results are identical.

In DYNARE, it is necessary to declare the stochastic trends thru the following
statement:

options.unitrootvars ='P.obs’; 'Y __obs’;

This syntax is temporary and will be made more DYNARE-like.
It is also necessary to set the option.iikt=2 in the estimation statement. In the
future, this should be triggered automatically from the declaration of a stochastic trend.



It is also necessary to declare the deterministic components of the stochastic trends
with the COEFETREND instruction (see /examples/fs2000/fs2000a.mod)
The new functions are

DgesLikelihood.m: replaces ngptmumlik for filtering
DiffuseLikelihood1.m

DiffuseLikelihood2.m

DiffuseLikelihoodH1.m

DiffuseLikelihoodH2.m

DiffuseLikelihoodH3.m

DgseSmoother.m: replaces wptmumlik for smoothing
DiffuseKalmanSmoother.m

DiffuseKalmanSmootherH.m

They still need thorough testing.

3 Examples

DYNARE is now able to estimate purely backward models. The first two examples are
such to isolate the problematic of estimating nonstationary models from the difficulties
of estimating forward—looking rational expectation models.

3.1

Two unrelated random walks

Artificial data (10000 observations) are generated by /examples/arima/mod1.mod for

dr, = 0.5dx_1 + €qy
dyt = _O-det—l + eyt
Ty = Ty—1 + duy

Yo = Ye—1 + dys

modla.mod estimates this model when anddy; are observed, and modlb.mod
when the level of the data;; andy;, are observed. As expected, the results are the
same.



3.2 A cointegrated system

Artificial data (10000 observations) are generated by /examples/arima/mod2.mod for

dxy = 0.5dz;_1 — 0.1(w4_1 — Y4—1) + €ay
dy; = —0.3dys—1 + 0.2(xi—1 — yi—1) + ey,
Ty = Ty +dxy

Y¢ = Ye—1 + dys

mod2a.mod estimates this model whén anddy; are observed, and andy are
treated as unobservable variables. The estimation procedure fails as the data is first
difference don’t contain any information about the initial levek:aindy.

mod2c.mod again estimates this model whiefp and dy, are observed, but the
model is reparametrized so as to have the cointegration error as stationary unobservable
variable.

mod2b.mod estimates the model with data in lewglandy,, are observed.In this
case, and on moderate samples (100 observations), data in level provide additional
information on the cointegrating relationship.

3.3 Schorfheide, 2000

fs2000.mod estimates the CIA model of Schorfheide (2000) with observation of the
rate of growth of prices and output. fs2000a.mod estimates with data in level. The
posterior mode of parameters is somewhat different.
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