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DSGE models (I, structural form)

• Our model is given by:

Et [Fθ(yt+1, yt, yt−1, εt)] = 0 (1)

with εt ∼ iid (0,Σ) is a random vector (r × 1) of structural
innovations, yt ∈ Λ ⊆ Rn a vector of endogenous variables,
Fθ : Λ3 × Rr → Λ a real function in C2 parameterized by a
real vector θ ∈ Θ ⊆ Rq gathering the deep parameters of
the model.

• The model is stochastic, forward looking and non linear.

• We want to estimate (a subset of) θ. For any estimation
approach (indirect inference, simulated moments,
maximum likelihood,...) we need first to solve this model.
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DSGE models (II, reduced form)

• We assume that a unique, stable and invariant, solution
exists. This solution is a non linear stochastic difference
equation:

yt = Hθ (yt−1, εt) (2)

The endogenous variables are written as a function of their
past levels and the contemporaneous structural shocks. Hθ

collects the policy rules and transition functions.

• Generally, it is not possible to get a closed form solution
and we have to consider an approximation (local or global)
of the true solution (2).

• Dynare uses a local approximation around the
deterministic steady state. Global approximations are not
yet implemented in dynare.
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DSGE models (III, reduced form)

• Substituting (2) in (1) for yt and yt+1 we obtain:

Et [Fθ ((Hθ (yt, εt+1) ,Hθ (yt−1, εt) , yt−1, εt)] = 0

• Substituting again (for yt in yt+1) and dropping time we
get:

Et
[Fθ

(
(Hθ

(Hθ (y, ε) , ε′
)
,Hθ (y, ε) , y, ε

)]
= 0 (3)

where y and ε are in the time t information set, but not ε′

which is assumed to be iid (0,Σ). Fθ is known and Hθ is
the unknown. We are looking for a function Hθ satisfying
this equation for all possible states (y, ε)...

• This task is far easier if we “solve” only locally (around the
deterministic steady state) this functional equation.
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Local approximation of the reduced form (I)

• The deterministic steady state is defined by the following
system of n equations:

Fθ (y∗(θ), y∗(θ), y∗(θ), 0) = 0

• The steady state depends on the deep parameters θ. Even
for medium scaled models, as in Smets and Wouters, it is
often possible to obtain a closed form solution for the
steady state ⇒ Must be supplied to dynare.

• Obviously, function Hθ must satisfy the following equality:

y∗ = Hθ (y∗, 0)

• Once the steady state is known, we can compute the
jacobian matrix associated to Fθ...
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Local approximation of the reduced form (II)

• Let ŷ = yt−1 − y∗, Fy+ = ∂Fθ
∂yt+1

, Fy = ∂Fθ
∂yt

, Fy− = ∂Fθ
∂yt−1

,

Fε = ∂Fθ
∂εt

, Hy = ∂Hθ
∂yt−1

and Hε = ∂Hθ
∂εt

.

• Fy+ , Fy, Fy− , Fε are known and Hy, Hε are the unknowns.

• With a first order Taylor expansion of the functional
equation (3) around y∗:

0 ' Fθ(y∗, y∗, y∗, 0) + Fy+
(Hy (Hyŷ +Hεε) +Hεε

′)

+ Fy (Hyŷ +Hεε) + Fy− ŷ + Fεε

Where all the derivatives are evaluated at the deterministic
steady state and Fθ(y∗, y∗, y∗, 0) = 0.
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Local approximation of the reduced form (III)

• Applying the conditional expectation operator, we obtain:

0 ' Fy+ (Hy (Hyŷ +Hεε))

+ Fy (Hyŷ +Hεε) + Fy− ŷ + Fεε
or equivalently:

0 ' Fy+HyHyŷ + FyHyŷ + Fy− ŷ
Fy+HyHεε+ FyHεε+ Fεε

• This equation must hold for any state (ŷ, ε), so that the
unknowns Hy and Hε must satisfy:





0 = Fy+HyHy + FyHy + Fy−
0 = Fy+HyHε + FyHε + Fε
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Local approximation of the reduced form (IV)

• This system is triangular (Hε does not appear in the first
equation) ⇒ “easy” to solve.

• The first equation is a quadratic equation... But the
unknown is a squared matrix (Hy). This equation may be
solved with any spectral method. dynare uses a
generalized Schur decomposition. A unique solution exists
iff BK conditions are satisfied.

• The second equation is linear in the unknown Hε, a unique
solution exists iff

Fy+Hy + Fy
is an inversible matrix (# if Fy and Fy+ are diagonal
matrices, each endogenous variable have to appear at time
t or with a lead).
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Local approximation of the reduced form (V)

• Finally the local dynamic is given by:

yt = y∗ +Hy(θ) (yt−1 − y∗) +Hε(θ)εt

where y∗, Hy(θ) and Hε(θ) are nonlinear functions of the
deep parameters.

• This result can be used to approximate the theoretical
moments:

E∞[yt] = y∗(θ)

V∞[yt] = Hy(θ)V∞[yt]Hy(θ)′ +Hε(θ)ΣHε(θ)′

The second equation is a kind of sylvester equation and
may be solved using the vec operator and kronecker
product.

• This result can also be used to approximate the likelihood.
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Estimation (I, Likelihood)

• A direct estimation approach is to maximize the likelihood
with respect to θ and vech (Σ).

• All the endogenous variables are not observed! Let y?t be a
subset of yt gathering all the observed variables.

• To bring the model to the data, we use a state-space
representation:

y?t = Zyt+ηt (4a)

yt = Hθ (yt−1, εt) (4b)

Equation (4b) is the reduced form of the DSGE model ⇒
state equation. Equation (4a) selects a subset of the
endogenous variables (Z is a m× n matrix) and a non
structural error may be added ⇒ measurement equation.
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Estimation (II, Likelihood)

• Let Y?T = {y?1, y?2, . . . , y?T } be the sample.

• Let ψ be the vector of parameters to be estimated
(θ,vech (Σ) and the covariance matrix of η).

• The likelihood, that is the density of Y?T conditionally on
the parameters, is given by:

L(ψ;Y?T ) = p (Y?T |ψ) = p (y?0|ψ)
T∏

t=1

p
(
y?t |Y?t−1, ψ

)
(5)

• To evaluate the likelihood we need to specify the marginal
density p (y?0|ψ) (or p (y0|ψ)) and the conditional density
p

(
y?t |Y?t−1, ψ

)
.
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Estimation (III, Likelihood)

• The state-space model (4), or the reduced form (2),
describes the evolution of the endogenous variables’
distribution.

• The distribution of the initial condition (y0) is equal to the
ergodic distribution of the stochastic difference equation
(so that the distribution of yt is time invariant ⇒ example
with an AR(1)).

• If the reduced form is linear (or linearized) and if the
disturbances are gaussian (say ε ∼ N (0,Σ), then the initial
(ergodic) distribution is gaussian:

y0 ∼ N (E∞[yt],V∞[yt])

• Unit roots (diffuse kalman filter).
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Estimation (IV, Likelihood)

• The density of y?t |Y?t−1 is not direct, because y?t depends on
unobserved endogenous variables.

• The following identity can be used:

p
(
y?t |Y?t−1, ψ

)
=

∫

Λ
p (y?t |yt, ψ) p(yt|Y?t−1, ψ)dyt (6)

The density of y?t |Y?t−1 is the mean of the density of y?t |yt
weigthed by the density of yt|Y?t−1.

• The first conditional density is given by the measurement
equation (4a).

• A Kalman filter is used to evaluate the density of the
latent variables (yt) conditional on the sample up to time
t− 1 (Y?t−1) [⇒ predictive density ].
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Estimation (V, Likelihood & Kalman Filter)

• The Kalman filter can be seen as a bayesian recursive
estimation device:

p (yt|Y?t−1, ψ) =

Z

Λ

p (yt|yt−1, ψ) p (yt−1|Y?t−1, ψ) dyt−1 (7a)

p (yt|Y?t , ψ) =
p (y?t |yt, ψ) p (yt|Y?t−1, ψ)R

Λ
p (y?t |yt, ψ) p

`
yt|Y?t−1, ψ

´
dyt

(7b)

• Equation (7a) says that the predictive density of the latent
variables is the mean of the density of yt|yt−1, given by the
state equation (4b), weigthed by the density yt−1

conditional on Y?t−1 (given by (7b)).

• The update equation (7b) is a direct application of the
Bayes theorem and tells us how to update our knowledge
about the latent variables when new information (data) is
available.
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Estimation (VI, Likelihood & Kalman Filter)

p (yt|Y?t , ψ) =
p (y?t |yt, ψ) p

(
yt|Y?t−1, ψ

)
∫
Λ p (y?t |yt, ψ) p

(
yt|Y?t−1, ψ

)
dyt

• p
(
yt|Y?t−1, ψ

)
is the a priori density of the latent variables

at time t.

• p (y?t |yt, ψ) is the density of the observation at time t
knowing the state and the parameters (this density is
obtained from the measurement equation (4a)) ⇒ the
likelihood associated to y?t .

• ∫
Λ p (y∗t |yt, ψ) p

(
yt|Y?t−1, ψ

)
dyt is the marginal density of

the new information.
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Estimation (VII, Likelihood & Kalman Filter)

• The evaluation of the likelihood is a computationaly (very)
intensive task... Except in some very simple cases. For
instance: purely forward IS and Phillips curves with a
simple taylor rule (without lag on the interest rate).

• This comes from the multiple integrals we have to evaluate
(to solve the model and to run the kalman filter).

• But if the model is linear, or if we approximate the model
around the deterministic steady state, and if the structural
shocks are gaussian, the recursive system of equations (7)
collapses to the well known formulas of the
(gaussian–linear) kalman filter.
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Estimation (VIII, Likelihood & Kalman Filter)

The linear–gaussian Kalman filter recursion is given by:

vt = y?t − y(θ)∗ − Zŷt

Ft = ZPtZ
′+V [η]

Kt = Hy(θ)PtHy(θ)′F−1
t

ŷt+1 = Hy(θ)ŷt +Ktvt

Pt+1 = Hy(θ)Pt(Hy(θ)−KtZ)′ +Hε(θ)ΣHε(θ)′

for t = 1, . . . , T , with ŷ0 and P0 given.
Finally the (log)-likelihood is:

lnL (ψ|Y?T ) = −Tk
2

ln(2π)− 1
2

T∑

t=1

|Ft| − 1
2
v′tF

−1
t vt
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Estimation (IX, Likelihood ⇒ Bayesian paradigm)

• We generally do not have an analytical expression for the
likelihood, but a numerical evaluation is possible.

• Experience shows that it is quite difficult to estimate a
model by maximum likelihood.

• The main reason is that data are not informative enough...
The likelihood is flat in some directions (identification
problems).

• This suggests that (when possible) we should use other
sources information ⇒ Bayesian approach.

• A second (practical) motivation for the bayesian estimation
is that (DSGE) models are mispecified.
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Estimation (X, Likelihood ⇒ Bayesian paradigm)

• When a misspecified model is estimated (for instance an
RBC model) by ML or with a “non informative” bayesian
approach (uniform priors) the estimated parameters are
often found to be incredible.

• Using prior informations we can shrink the estimates
towards sensible values.

• A third motivation is related to the precision of the ML
estimator. Using informative priors we reduce the posterior
uncertainty (variance).
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Bayesian paradigm (I)

• Let the prior density be p0(ψ).

• The posterior density is given by (Bayes theorem):

p1 (ψ|Y?T ) =
p0 (ψ) p(Y?T |ψ)

p(Y?T )
(8)

where
p (Y?T ) =

∫

Ψ
p0 (ψ) p(Y?T |ψ)dψ (9)

is the marginal density of the sample (model comparison).

• The posterior density is proportional to the product of the
prior density and the likelihood.

p1 (ψ|Y?T ) ∝ p0 (ψ) p(Y?T |ψ)

• The prior affects the shape of the likelihood!...
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A simple example (I)

• Data Generating Process

yt = µ+ εt

where εt ∼ N (0, 1) is a gaussian white noise.

• Let YT ≡ (y1, . . . , yT ). The likelihood is given by:

p(YT |µ) = (2π)−
T
2 e−

1
2

PT
t=1(yt−µ)2

• And the ML estimator of µ is:

µ̂ML,T =
1
T

T∑

t=1

yt ≡ y
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A simple example (II)

• Note that the variance of this estimator is a simple
function of the sample size

V[µ̂ML,T ] =
1
T

• Noting that:
T∑

t=1

(yt − µ)2 = νs2 + T (µ− µ̂)2

with ν = T − 1 and s2 = (T − 1)−1
∑T

t=1(yt − µ̂)2.

• The likelihood can be equivalently written as:

p(YT |µ) = (2π)−
T
2 e−

1
2(νs2+T (µ−bµ)2)

The two statistics s2 and µ̂ are summing up the sample
information.
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A simple example (II, bis)

T∑

t=1

(yt − µ)2 =
T∑

t=1

([yt − µ̂]− [µ− µ̂])2

=
T∑

t=1

(yt − µ̂)2 +
T∑

t=1

(µ− µ̂)2 −
T∑

t=1

(yt − µ̂)(µ− µ̂)

= νs2 + T (µ− µ̂)2 −
(

T∑

t=1

yt − T µ̂

)
(µ− µ̂)

= νs2 + T (µ− µ̂)2

The last term cancels out by definition of the sample mean.
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A simple example (III)

• Let our prior be a gaussian distribution with expectation
µ0 and variance σ2

µ.

• The posterior density is defined, up to a constant, by:

p (µ|YT ) ∝ (2πσ2
µ)
− 1

2 e
− 1

2
(µ−µ0)2

σ2
µ × (2π)−

T
2 e−

1
2(νs2+T (µ−bµ)2)

where the missing constant (denominator) is the marginal
density (does not depend on µ).

• We also have:

p(µ|YT ) ∝ exp
{
−1

2

(
T (µ− µ̂)2 +

1
σ2
µ

(µ− µ0)2
)}
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A simple example (IV)

A(µ) = T (µ− bµ)2 +
1

σ2
µ

(µ− µ0)
2

= T
`
µ2 + bµ2 − 2µbµ´+

1

σ2
µ

`
µ2 + µ2

0 − 2µµ0

´

=

„
T +

1

σ2
µ

«
µ2 − 2µ

„
T bµ+

1

σ2
µ

µ0

«
+

„
T bµ2 +

1

σ2
µ

µ2
0

«

=

„
T +

1

σ2
µ

«2
4µ2 − 2µ

T bµ+ 1
σ2

µ
µ0

T + 1
σ2

µ

3
5+

„
T bµ2 +

1

σ2
µ

µ2
0

«

=

„
T +

1

σ2
µ

«2
4µ−

T bµ+ 1
σ2

µ
µ0

T + 1
σ2

µ

3
5

2

+

„
T bµ2 +

1

σ2
µ

µ2
0

«

−

“
T bµ+ 1

σ2
µ
µ0

”2

T + 1
σ2

µ
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A simple example (V)

• Finally we have:

p(µ|YT ) ∝ exp



−

1
2

(
T +

1
σ2
µ

)[
µ−

T µ̂+ 1
σ2
µ
µ0

T + 1
σ2
µ

]2




• Up to a constant, this is a gaussian density with (posterior)
expectation:

E [µ] =
T µ̂+ 1

σ2
µ
µ0

T + 1
σ2
µ

and (posterior) variance:

V [µ] =
1

T + 1
σ2
µ
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A simple example (VI, The bridge)

• The posterior mean is a convex combination of the prior
mean and the ML estimate.

– If σ2
µ →∞ (no prior information) then E[µ] → µ̂ (ML).

– If σ2
µ → 0 (calibration) then E[µ] → µ0.

• If σ2
µ <∞ then the variance of the ML estimator is greater

than the posterior variance.

• Not so simple if the model is non linear in the estimated
parameters...

– Asymptotic approximation.

– Simulation based approach.
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Bayesian paradigm (II, Model Comparison) – a –

• Suppose we have two models A and B (with two associated
vectors of deep parameters ψA and ψB) estimated using the
same sample Y?T .

• For each model I = A,B we can evaluate, at least
theoretically, the marginal density of the data conditional
on the model:

p(Y?T |I) =
∫

ΨI
p(ψI |I)× p(Y?T |ψI , I)dψI

by integrating out the deep parameters ψI from the
posterior kernel.

• p(Y?T |I) measures the fit of model I.
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Bayesian paradigm (II, Model Comparison) – b –

YT

p(YT |B)

p(YT |A)

model A
model B
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Bayesian paradigm (II, Model Comparison) – c –

• Suppose we have a prior distribution over models: p(A)
and p(B).

• Again, using the Bayes theorem we can compute the
posterior distribution over models:

p(I|Y?T ) =
p(I)p(Y?T |I)∑

I=A,B p(I)p(Y?T |I)

• This formula may easily be generalized to a collection of N
models.

• Posterior odds ratio:

p(A|Y?T )
p(B|Y?T )

=
p(A)
p(B)

p(Y?T |A)
p(Y?T |B)
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Bayesian paradigm (III)

• The results may depend heavily on our choice for the prior
density or the parametrization of the model.

• How to choose the prior ?

– Subjective choice (data driven or theoretical),
example: the Calvo parameter for the Phillips
curve.

– Objective choice, examples: the (optimized)
Minnesota prior for VAR (Phillips, 1996).

• Robustness of the results must be evaluated:

– Try different parametrization.

– Use more general prior densities.

– Uninformative priors.
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Bayesian paradigm (IV, parametrization) – a –

• Estimation of the Phillips curve :

πt = βEπt+1 +
(1− ξp)(1− βξp)

ξp

(
(σc + σl)yt + τt

)

• ξp is the (Calvo) probability (for an intermediate firm) of
being able to optimally choose its price at time t. With
probability 1− ξp the price is indexed on past inflation
an/or steady state inflation.

• Let αp ≡ 1
1−ξp be the expected period length during which

a firm will not optimally adjust its price.

• Let λ = (1−ξp)(1−βξp)
ξp

be the slope of the Phillips curve.

• Suppose that β, σc and σl are known.
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Bayesian paradigm (IV, parametrization) – b –

• The prior may be defined on ξp, αp or the slope λ.

• Say we choose a uniform prior for the Calvo probability:

ξp ∼ U[.51,.99]

The prior mean is .75 (so that the implied value for αp is 4
quarters). This prior is often think as a non informative
prior...

• An alternative would be to choose a uniform prior for αp:

αp ∼ U[1− 1
.51
,1− 1

.99 ]

• These two priors are very different!
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Bayesian paradigm (IV, parametrization) – c –

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
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# The prior on αp is much more informative than the prior on
ξp.

July 2, 2007 Université du Maine, GAINS & CEPREMAP Page 34



Bayesian paradigm (IV, parametrization) – d –

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0
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80

Implied prior density of ξp = 1− 1
αp

if the prior density of αp is
uniform.
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Bayesian paradigm (V, more general prior densities)

• Robustness of the results may be evaluated by considering
a more general prior density.

• For instance, in our simple example we could assume a
student prior density for µ instead of a gaussian density.
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Bayesian paradigm (VI, flat prior)

• If a parameter, say µ, can take values between −∞ and ∞,
the flat prior is a uniform density between −∞ and ∞.

• If a parameter, say σ, can take values between 0 and ∞,
the flat prior is a uniform density between −∞ and ∞ for
log σ:

p0(log σ) ∝ 1 ⇔ p0(σ) ∝ 1
σ

• Invariance.

• Why is this prior non informative ?...
∫
p0(µ)dµ is not

defined! ⇒ Improper prior.

• Practical implications for DSGE estimation.
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Bayesian paradigm (VII, non informative prior)

• An alternative, proposed by Jeffrey, is to use the Fisher
information matrix:

p0(ψ) ∝ |I(ψ)| 12

with

I(ψ) = E
[(

∂p(Y?T |ψ)
∂ψ

)(
∂p(Y?T |ψ)

∂ψ

)′]

• The idea is to mimic the information in the data...

• Automatic choice of the prior.

• Invariance to any continuous transformation of the
parameters.

• Very different results (compared to the flat prior) ⇒ Unit
root controverse.
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Bayesian paradigm (VIII, Asymptotics)

• Asymptotically, when the size of the sample (T ) grows, the
choice of the prior doesn’t matter.

• Under general conditions, the posterior distribution is
asymptotically gaussian.

• Let ψ∗ be the posterior mode obtained by maximizing the
posterior kernel K(ψ) ≡ K (ψ,Y?T ). With an order two
Taylor expansion around ψ∗, we have:

logK(ψ) = logK(ψ∗) + (ψ − ψ∗)′
∂ logK(ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

+
1
2
(ψ − ψ∗)′

∂2 logK(ψ)
∂ψ∂ψ′

∣∣∣∣
ψ=ψ∗

(ψ − ψ∗) + . . .
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Bayesian paradigm (VIII, Asymptotics)

or equivalently:

logK(ψ) = logK(ψ∗)−1
2
(ψ−ψ∗)′[H(ψ∗)]−1(ψ−ψ∗)+O(||ψ−ψ∗||3)

where H(ψ∗) is minus the inverse of the hessian matrix
evaluated at the posterior mode.

• The posterior kernel can be approximated by:

K(ψ) =̇ K(ψ∗)e−
1
2
(ψ−ψ∗)′[H(ψ∗)]−1(ψ−ψ∗)

• Up to a constant

c = K(ψ∗)(2π)
k
2 |H(θ∗)| 12

we recognize the density of a multivariate normal
distribution.
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Bayesian paradigm (VIII, Asymptotics)

• Completing for constant of integration we obtain an
approximation of the posterior density:

p1 (ψ) =̇ (2π)−
k
2 |H(ψ∗)|− 1

2 e−
1
2
(ψ−ψ∗)′[H(ψ∗)]−1(ψ−ψ∗) (10)

• If the model is stationnary the hessian matrix is of order
O(T ), as T tends to infinity the posterior distribution
concentrates around the posterior mode.

• This asymptotic result, allows us to approximate any
posterior moment. For instance:

E [ϕ(ψ)] =

∫
Ψ ϕ(ψ)p(Y?T |ψ)p0(ψ)dψ∫

Ψ p(Y?T |ψ)p0(ψ)dψ

Tierney and Kadane (1986) show that if we approximate at
order two the numerator around the mode of
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Bayesian paradigm (VIII, Asymptotics)

ϕ(ψ)p(Y?T |ψ)p0(ψ) and the denominator around the mode
of p(Y?T |ψ)p0(ψ) (the posterior mode), then the
approximation error is of order O(T−2).

• Except for the marginal density (the constant of integration
c) this approach is not yet implemented in Dynare.

• The asymptotic approximation is reliable iff the true
posterior distribution is not too far from the gaussian
distribution.
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Bayesian paradigm (IX, Simulations)

• We need a simulation approach if we want to obtain exact
results (ie not relying on asymptotic approximation).

• Noting that:

E [ϕ(ψ)] =
∫

Ψ
ϕ(ψ)p1(ψ|Y?T )dψ

we can use the empirical mean of(
ϕ(ψ(1)), ϕ(ψ(2)), . . . , ϕ(ψ(n))

)
, where ψ(i) are draws from

the posterior distribution to evaluate the expectation of
ϕ(ψ). The approxomation error goes to zero when n→∞.

• We need to simulate draws from the posterior distribution
⇒ Metropolis-Hastings.

July 2, 2007 Université du Maine, GAINS & CEPREMAP Page 43



Bayesian paradigm (X, A simple case)

• Imagine we want to obtain some draws from a N (0, 4)
distribution...

• But we are only able to draw from N (0, 1) and we don’t
realize that we should simply multiply by 2 the draws from
a standard normal distribution.

• The idea is to build a stochastic process whose limiting
distribution is N (0, 4).

• We define the following AR(1) process:

xt = ρxt−1 + εt

with εt ∼ N (0, 1), |ρ| < 1 and x0 = 0.

• We just have to choose ρ such that the asymptotic
distribution of {xt} is N (0, 4).
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Bayesian paradigm (X, A simple case)

We have:

• x1 = ε1 ∼ N (0, 1)

• x2 = ρε1 + ε2 ∼ N (
0, 1 + ρ2

)

• x3 = ρ2ε1 + ρε2 + ε3 ∼ N (
0, 1 + ρ2 + ρ4

)

• xT = ρT−1ε1+ρT−2ε2+· · ·+εT ∼ N (
0, 1 + ρ2 + . . . ρ2(T−1)

)

• And

x∞ ∼ N
(

0,
1

1− ρ2

)

So that V∞[xt] = 4 iff ρ = ±
√

3
2 .
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Bayesian paradigm (X, A simple case)

• If we simulate enough draws from this gaussian
autoregressive stochastic process, we can replicate the
targeted distribution.

• In this case it is very simple because we know exactly the
targeted distribution and we are able to obtain some
draws from its standardized version.

• This is far from true with dsge models. For instance, we
even don’t have an analytical expression for the posterior
distribution.
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Bayesian paradigm (XI, Metropolis-Hastings) – a –

1. Choose a starting point Ψ0 & run a loop over 2-3-4.

2. Draw a proposal Ψ? from a jumping distribution

J(Ψ?|Ψt−1) = N (Ψt−1, c× Ωm)

3. Compute the acceptance ratio

r =
p1(Ψ?|Y?T )
p(Ψt−1|Y?T )

=
K(Ψ?|Y?T )
K(Ψt−1|Y?T )

4. Finally

Ψt =





Ψ? with probability min(r, 1)

Ψt−1 otherwise.
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Bayesian paradigm (XI, Metropolis-Hastings) – b –

θ
o

K (θo)

posterior kernel
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Bayesian paradigm (XI, Metropolis-Hastings) – c –

θ
o

K (θo)

θ
1 = θ

∗

K
(

θ
1
)

= K (θ∗)

posterior kernel
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Bayesian paradigm (XI, Metropolis-Hastings) – d –

θ
o

K (θo)

θ
1

K
(

θ
1
)

θ
∗

K(θ∗) ??

posterior kernel
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Bayesian paradigm (XI, Metropolis-Hastings) – e –

• How should we choose the scale factor c (variance of the
jumping distribution) ?

• The acceptance ratio should be strictly positive and not
too important.

• How many draws ?

• Convergence has to be assessed...

• Parallel Markov chains → Pooled moments have to be
close to Within moments.
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Bayesian paradigm (XII, Markov Chains)

• A Markov chain is a sequence of continuous random
variables

(
ψ(0), . . . , ψ(n)

)
, generated by an order one

Markov process (ie the distribution of ψ(s) depends only on
ψ(s−1).

• A Markov chain is defined by a transition kernel that
specify the probability to move from η ∈ Ψ to S ⊆ Ψ.

• Let P (η, S) be the transition kernel. We have P (η,Ψ) = 1
for all η in Ψ. If the Markov chain defined by the kernel P
converge toward an invariant distribution π, then the
kernel must also satisfy the following equation:

π(S) =
∫

Ψ
P (η, S)π (dη)

for all measurable set S de Ψ.
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Bayesian paradigm (XII, Markov Chains)

• Before the ergodic distribution π, if P (s)(η, S) denotes the
probability that ψ(s) be in S knowing that ψ(s−1) = η, we
have:

P (s)(η, S) =
∫

Ψ
P (ν, S)P (s−1) (η, dν)

At each iteration the distribution of ψ changes,
asymptotically the chain attains the ergodic distribution:

lim
s→∞P

(s)(η, S) = π(S)

• The idea is to choose the transition kernel such that the
invariant distribution is the posterior density.

Let p(η, ν) and π̃ be the densities associated to the kernel
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Bayesian paradigm (XII, Markov Chains)

P and the invariant distribution πa.

• Tierney (1994) shows that if the density p(η, µ) satisfy the
reversibility condition:

π̃(η)p(η, ν) = π̃(ν)p(ν, η)
aThe kernel P (η, S) defines the probability to move from η to S. In

a favorable case, ψ is in S at the next iteration, two possibilities may be

considered : (i) η moves effectively and goes in region S at the next iteration,

(ii) η does not move but η is already in region S. The density associated to

P is thus a discrete-continuous density, Tierney (1994) adopts the following

definition:

P (η, dν) = p(η, ν)dν + (1− r(η))δη(dν)

where p(η, ν) ≡ p(ν|η) is the density associated to the transition from η to

ν, r(η) =
R
p(η, ν)dν < 1, 1− r(η) is the probability to stay at the position

ψ = η, δη(S) is a dirac fonction equal to one iff η ∈ S.
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Bayesian paradigm (XII, Markov Chains)

then π is the invariant distribution associated to P

• Equivalently, this condition says that:

π̃(η)
π̃(ν)

=
p(ν, η)
p(η, ν)

> 1

if the density of ψ = η, π̃(η), dominate the density
associated to ψ = ν, π̃(ν), then it must be “easier” to go
from ν to η than from η to ν.
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Bayesian paradigm (XIII, Metropolis–Hastings again) – a –

• Say we use Q(η, S) as a transition kernel. If we target the
posterior distribution it is most likely that the reversibility
condition won’t be satisfied, ie

p1(η)q(η, ν) 6= p1(ν)q(ν, η)

• The Metropolis-Hastings is a general algorithm that
corrects the transition kernel so that the reversibility
condition holds.

• Suppose that p1(η)q(η, ν) > p1(ν)q(ν, η), the MC does not
provide enough transitions from ψ = ν to ψ = η so that the
reversibility condition is not satisfied.

• The MH algorithm corrects this error by not accepting
systematically the jumps proposed by the transition kernel.
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Bayesian paradigm (XIII, Metropolis–Hastings again) – b –

1. Choose an initial condition ψ(0) such that p1(ψ(0)) > 0 and
let s be equal to 1.

2. Generate a draw (proposition) ψ? from q
(
ψ(s−1), ψ?

)
.

3. Generate u from a uniform distribution between 0 and 1.

4. Apply the following rule:

ψ(s) =

8
<
:
ψ? if α

“
ψ(s−1), ψ?

”
> u

ψ(s−1) otherwise.

where the probability of acceptation is:

α(ψ(s−1), ψ?) = min

8
<
:1,

K (ψ? | Y?T )

K (ψ(s−1) | Y?T )

q
“
ψ(s−1) | ψ?

”

q (ψ? | ψ(s−1))

9
=
;

5. Loop over (2-4) for s = 2, . . . , n
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Bayesian paradigm (XIV, Marginal density)

• The marginal density of the sample may be written as:

p(Y?T |A) =
∫

ΨA
p(Y?T , ψA|A)dψA

• ... or equivalently:

p(Y?T |A) =
∫

ΨA
p(Y?T |ΨA,A)︸ ︷︷ ︸

likelihood

p(ψA|A)︸ ︷︷ ︸
prior

dψA

• We face an integration problem.
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Bayesian paradigm (XIV, Laplace approximation)

• For dsge models we are unable to compute this integral
analytically or with standard numerical tools (curse of
dimensionality).

• We assume that the posterior distribution is not too far
from a gaussian distribution. In this case we can
approximate the marginal density of the sample.

• We have:

p(Y?T |A) ≈ (2π)
n
2 |H(ψ∗)| 12 p(Y?T |ψ∗A,A)p(ψ∗A|A)

• This approach gives accurate estimation of the marginal
density if the posterior distribution is uni-modal.
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Bayesian paradigm (XIV, A first simulation based method)

• We can estimate the marginal density using a monte-carlo

p̂(Y?T |A) =
1
B

B∑

b=1

p(Y?T |ψ(b)
A ,A)

where ψ(b)
A is simulated from the prior distribution.

• p̂(Y?T |A) −→
B→∞

p(Y?T |A).

• But this method is highly inefficient, because:

– p̂(Y?T |A) has a huge variance.

– We are not using simulations already done to obtain the
posterior distributions (ie Metropolis-Hastings).
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Bayesian paradigm (XIV, Harmonic mean) – a –

• Note that

E
"

f(ψA)

p(ψA|A)p(Y?
T
|ψA,A)

˛̨
˛̨ψA,A

#
=

Z

ΨA

f(ψA)p(ψA|Y?
T ,A)

p(ψA|A)p(Y?
T
|ψA,A)

dψA

where f is any density function.

• The right member of the equality, using the definition of
the posterior density, may be rewritten as

Z

ΨA

f(ψA)

p(ψA|A)p(Y?
T
|ψA,A)

p(ψA|A)p(Y?
T |ψA,A)

R
ΨA p(ψA|A)p(Y?

T
|ψA,A)dψA

dψA

• Finally, we have

E
"

f(ψA)

p(ψA|A)p(Y?
T
|ψA,A)

˛̨
˛̨ψA,A

#
=

R
Ψ f(ψ)dψ

R
ΨA p(ψA|A)p(Y?

T
|ψA,A)dψA

July 2, 2007 Université du Maine, GAINS & CEPREMAP Page 61



Bayesian paradigm (XIV, Harmonic mean) – b –

• So that

p(Y?T |A) = E
[

f(ψA)
p(ψA|A)p(Y?T |ψA,A)

∣∣∣∣ψA,A
]−1

• This suggests the following estimator of the marginal
density

p̂(Y?T |A) =

[
1
B

B∑

b=1

f(ψ(b)
A )

p(ψ(b)
A |A)p(Y?T |ψ(b)

A ,A)

]−1

• Each drawn vector ψ(b)
A comes from the

Metropolis-Hastings monte-carlo.

July 2, 2007 Université du Maine, GAINS & CEPREMAP Page 62



Bayesian paradigm (XIV, Harmonic mean) – c –

• The preceding proof holds if we replace f(θ) by 1
# Simple Harmonic Mean estimator. But this estimator
may also have a huge variance.

• The density f(θ) may be interpreted as a weighting
function, we want to give less importance to extremal
values of θ.

• Geweke (1999) suggests to use a truncated gaussian
function (modified harmonic mean estimator).
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Bayesian paradigm (XIV, Harmonic mean) – d –

ψ =
1

B

BX

b=1

ψ
(b)
M

Ω =
1

B

BX

b=1

(ψ
(b)
M − ψ)′(ψ(b)

M − ψ)

• For some p ∈ (0, 1) we define

eΨ =
n
ψM : (ψ

(b)
M − ψ)′Ω

−1
(ψ

(b)
M − ψ) ≤ χ2

1−p(n)
o

• ... And take

f(ψM) = p−1(2π)−
n
2 |Ω|− 1

2 e−
1
2 (ψM−ψ)′Ω−1

(ψM−ψ)IeΨ(ψM)
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Bayesian paradigm (XV, Credible set)

• A synthetic way to characterize the posterior distribution
is to build something like a confidence interval.

• We define:

P (ψ ∈ C) =
∫

C
p(ψ)dψ = 1− α

is a 100(1−α)% credible set for ψ with respect to p(ψ) (for
instance, with α = 0.2 we have a 80% credible set).

• A 100(1− α)% highest probability density (HPD) credible
set for ψ with respect to p(ψ) is a 100(1− α)% credible set
with the property

p(ψ1) ≥ p(ψ2) ∀ψ1 ∈ C and ∀ψ2 ∈ C̄
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Bayesian paradigm (XVI, Posterior density)

• To obtain a complete view about the posterior distribution
we can estimate each the marginal posterior densities (for
each parameter of the model).

• We use a non parametric estimator:

f̂(ψ) =
1

Nh

NX

i=1

K

 
ψ − ψ(i)

h

!

where N is the number of draws in the metropolis, ψ is a
point where we want to evaluate the posterior density, ψ(i)

is a draw from the metropolis, K(•) is a kernel (gaussian
by default in Dynare) and h is a bandwidth parameter.

• In Dynare the bandwidth parameter is optimally chosen
considering the Silverman’s rule of thumb.

July 2, 2007 Université du Maine, GAINS & CEPREMAP Page 66



Bayesian paradigm (XVI, Posterior predictive density)

• Knowing the posterior distribution of the model’s
parameters, we can forecast the endogenous variables of
the model.

• We define the posterior predictive density as follows:

p(Ỹ|Y?T ) =
∫

ΨA
p(Ỹ, ψA|Y?T ,A)dψA

where, for instance, Ỹ might be yT+1. Knowing that
p(Ỹ, ψA|Y?T ,A) = p(Ỹ|ψA,Y?T ,A)p(ψA|Y?T ,A) we have:

p(Ỹ|Y?T ) =
∫

ΨA
p(Ỹ|ψA,Y?T ,A)p(ψA|Y?T ,A)dψA
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Bayesian paradigm (XVII, Numerical integration)

• The metropolis draws can be used to estimate any
moments of the parameters (or function of the parameters).

• We have

E [h(ψA)] =
∫

ΨA
h(ψA)p(ψA|Y?T ,A)dψA

≈ 1
N

N∑

i=1

h
(
ψ

(i)
A

)

where ψ(i)
A is a metropolis draw and h is any continuous

function.

July 2, 2007 Université du Maine, GAINS & CEPREMAP Page 68



Bayesian paradigm (XVIII, Point estimation) – a –

• The metropolis-Hastings allows us to estimate the
posterior distribution of each deep parameters of a model...
But we may be interested in a point estimate (like in
classical inference) instead of the entire distribution.

• We have to choose a point in the posterior distribution.

• We define a Bayes risk function:

R(a) = E [L(a, ψ)]

=
∫

Ψ
L(a, ψ)p(ψ)dψ

where L(a, ψ) is the loss function associated with decision
a when parameters take value ψ.
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Bayesian paradigm (XVIII, Point estimation) – b –

Action: deciding that the estimated value of ψ is ψ̂ such that:

ψ̂ = arg min
eψ

∫

Ψ
L(ψ̃, ψ)p(ψ|Y?T ,M)dψ

• Quadratic loss function (L2 norm):

ψ̂ = E(ψ|Y?T ,M)

• Absolute value loss function (L1 norm):

ψ̂ = median of the posterior distribution

• Zero-one loss function: ψ̂ = posterior mode
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Rabanal & Rubio-Ramirez 2001 (I)

• New keynesian models.

• Common equations :

– yt = Etyt+1 − σ(rt − Et∆pt+1 + Etgt+1 − gt)

– yt = at + (1− δ)nt

– mct = wt − pt + nt − yt

– mrst = 1
σyt + γnt − gt

– rt = ρrrt−1 + (1− ρr) [γπ∆pt + γyyt] + zt

– wt − pt = wt−1 − pt−1 + ∆wt −∆pt

– at, gt ∼ AR(1), zt, λt are gaussian white noises.
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Rabanal & Rubio-Ramirez 2001 (II)

• Baseline sticky prices model (BSP) :

– ∆pt = βE [∆pt+1 + κp(mct + λt)]

– wt − pt = mrst

• Sticky prices & Price indexation (INDP) :

– ∆pt = γb∆pt−1 + γfE
[
∆pt+1 + κ′p(mct + λt)

]

– wt − pt = mrst

• Sticky prices & wages (EHL) :

– ∆pt = βEt [∆pt+1 + κp(mct + λt)]

– ∆wt = βEt [∆wt+1] + κw [mrst − (wt − pt)]

• Sticky prices & wages + Wage indexation (INDW) :

– ∆wt − α∆pt−1 =
βEt [∆wt+1]− αβ∆pt + κw [mrst − (wt − pt)]
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Rabanal & Rubio-Ramirez 2001 (III, with Dynare) – a –

var a g mc mrs n pie r rw winf y;

varexo e_a e_g e_lam e_ms;

parameters invsig delta .... ;

model(linear);

y=y(+1)-(1/invsig)*(r-pie(+1)+g(+1)-g);

y=a+(1-delta)*n;

mc=rw+n-y;

....

end;
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Rabanal & Rubio-Ramirez 2001 (III, with Dynare) – b –

estimated_params;

stderr e_a, uniform_pdf,,,0,1;

stderr e_lam, uniform_pdf,,,0,1;

....

gampie, normal_pdf, 1.5, 0.25;

....

end;

varobs pie r y rw;

estimation(datafile=dataraba,first_obs=10,

....,mh_jscale=0.5);
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Rabanal & Rubio-Ramirez 2001 (IV, Dynare output) – a –
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Rabanal & Rubio-Ramirez 2001 (IV, Dynare output) – b –
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Rabanal & Rubio-Ramirez 2001 (IV, Dynare output) – c –
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Rabanal & Rubio-Ramirez 2001 (IV, Dynare output) – d –
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Rabanal & Rubio-Ramirez 2001 (IV, Dynare output) – e –
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