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Risk Matters: A Comment

By Benjamin Born and Johannes Pfeifer∗

Jesús Fernández-Villaverde, Pablo A. Guerrón-Quintana, Juan F. Rubio-

Ramı́rez and Mart́ın Uribe (2011) find that risk shocks are an important

factor in explaining emerging market business cycles. We show that their

model needs to be recalibrated because it underpredicts the targeted business

cycle moments by a factor of three once a time aggregation error is corrected.

Recalibrating the corrected model for the benchmark case of Argentina, the

peak response of output after an interest rate risk shock increases by 63

percent and the contribution of interest rate risk shocks to business cycle

volatility more than doubles. Hence, risk matters more in the recalibrated

model. However, the recalibrated model does worse in capturing the business

cycle properties of net exports once an additional error in the computation

of net exports is corrected.

JEL: E32, E43, F32, F44

Keywords: Interest Rate Risk, Stochastic Volatility

Fernández-Villaverde et al. (2011) (FGRU subsequently) find that risk shocks – mean pre-

serving spreads to shock distributions – are an important factor in explaining business cycles

in emerging market economies. Their results and methods have already spurred further work

on the role of risk shocks for macroeconomic fluctuation (e.g. Martin M. Andreasen (2012),

Yusuf Soner Başkaya, Timur Hülagü and Hande Küşük (2013), Susanto Basu and Brent

Bundick (2012), Benjamin Born and Johannes Pfeifer (2013), Jesús Fernández-Villaverde,

Pablo A. Guerrón-Quintana, Keith Kuester and Juan F. Rubio-Ramı́rez (2012), and Michael

Plante and Nora Traum (2012)). To establish the importance of risk shocks in emerging mar-

ket economies, FGRU use data for Argentina, Brazil, Ecuador, and Venezuela to calibrate
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Mannheim, E-mail: pfeifer@uni-mannheim.de. Special thanks go to Antonio Ciccone and Juan Rubio-
Ramı́rez. We are also grateful to Klaus Adam, Michael Evers, and Gernot Müller for very helpful suggestions
and discussions. All remaining errors are of course our own.
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a model of a small open economy subject to shocks to the level and volatility of interest

rates. FGRU then report two sets of results for their calibrated model: The first set of

results is used to gauge the success of the calibration by comparing six predicted moments

– two of them untargeted – with the corresponding moments in the data (the untargeted

moments being the volatility and cyclical properties of net exports). The second set shows

the predicted response of main macroeconomic variables, like output and consumption, to

risk shocks.

We argue that these results are affected by two coding issues. The first coding issue is in

the time aggregation of flow variables from months to quarters. The correct time aggregation

mechanically reduces the volatility of the main flow variables and the effect of risk shocks

on these variables by a factor of three for any given calibration. However, as the volatilities

of the main flow variables are targeted moments in the calibration, it is a priori unclear how

the correct time aggregation changes the impact of risk shocks on aggregate variables once

the model is recalibrated. When we recalibrate the corrected model for the benchmark case

of Argentina, we actually find that risk shocks matter more for output: the peak effect of a

risk shock on output turns out to be 63 percent higher than reported by FGRU.

A second coding issue is in the computation of net exports and affects the cyclicality and

volatility of net exports. When we correct the computation, we find that net exports are

predicted to be procyclical instead of approximately acyclical as reported in FGRU. This

continues to be the case in the recalibrated and corrected model for the benchmark case

of Argentina. Hence, the model fails to capture the empirically countercyclical behavior of

net exports documented in FGRU and the emerging market business cycle literature (see

e.g. Mark Aguiar and Gita Gopinath, 2007; David K. Backus, Patrick J. Kehoe and Finn E.

Kydland, 1992; Javier Garćıa-Cicco, Roberto Pancrazi and Mart́ın Uribe, 2010; Pablo A.

Neumeyer and Fabrizio Perri, 2005). Furthermore, the recalibrated corrected model predicts

that net exports are substantially more volatile than in the data.

The rest of the paper proceeds as follows. Section I deals with the time aggregation and

Section II with the computation of net exports. Section III concludes.1

1Minor points and technical descriptions of the algorithms used are relegated to the appendix. We use
FGRU’s first stage estimates for the exogenous processes and the same notation, focusing on their benchmark
case of Argentina with uncorrelated shocks (termed M1 in FGRU).



RISK MATTERS: A COMMENT 3

I. Time Aggregation

A. Correct Time Aggregation Keeping the Model Calibration at the Values in FGRU

FGRU set up their model in monthly terms, but report results at quarterly frequency as

most data are available at quarterly frequency only. They aggregate monthly output, con-

sumption, investment, and hours worked to quarterly frequency by summing up monthly

percentage deviations.2 For flow variables expressed in percentage deviation terms, the cor-

rect way to aggregate is to average the monthly values. For example, if monthly GDP is

100 in steady state, a one percent GDP deviation from steady state for one month corre-

sponds to a deviation of one third of a percent (1/300) for quarterly GDP. The correct time

aggregation mechanically reduces the predicted volatility of the main flow variables and the

predicted effect of risk shocks on these variables by a factor of three for any given set of model

parameters. The effect on the predicted volatility of output, consumption, and investment

is illustrated in Table 1.3,4 The table shows the predicted moments reported in FGRU, the

predicted moments when time aggregation is corrected but model parameters are kept at the

values calibrated by FGRU, and the moments in the data. It can be seen that correct time

aggregation implies that FGRU’s calibrated model underpredicts the data moments by a fac-

tor of three. As FGRU’s calibration method targets the moments for output, consumption,

and investment, this implies that the model needs to be recalibrated.

B. Recalibrating the Model with Correct Time Aggregation

FGRU calibrate their model to monthly frequency and fix most parameters to either stan-

dard values in the literature or to match great ratios. Four remaining parameters, i) the

2Specifically, for the moment computations, the percentage deviations are from the deterministic steady
state and for the for impulse response functions (IRFs) from the ergodic mean in the absence of shocks
(EMAS) (see Appendix A.A2 for details). We use the term EMAS for FGRU’s concept of “[s]tarting from
the ergodic mean and in the absence of shocks” (p. 10 in their technical appendix). The EMAS is the fixed
point of the third order approximated policy functions in the absence of shocks. Sometimes, it is referred to
as the “stochastic steady state” (e.g. Michel Juillard and Ondra Kamenik, 2005), because it is the point of
the state space where, in absence of shocks in that period, agents would choose to remain although they are
taking future volatility into account.

3For Argentina, the results of FGRU could be exactly replicated due to FGRU’s computer code providing
the pseudo-random number generator seed used. For the other countries, small differences are introduced
by a different seed for the pseudo-random number generator. This explains why the relative volatilities do
not stay exactly constant from the first to the second and the fourth to the fifth column.

4The effect of correct time aggregation keeping all model parameters at the values calibrated by FGRU
on the impact of risk shocks on output, consumption, investment, and hours is illustrated in Appendix C.
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Table 1—Effect of Correct Time Aggregation (TA) on Second Moments Keeping the Model

Parameters at the Values Calibrated in FGRU

Argentina Ecuador

FGRU Correct TA Data FGRU Correct TA Data

σY 5.30 1.77 4.77 2.23 0.74 2.46
σC/σY 1.54 1.53 1.31 2.13 2.17 2.48
σI/σY 3.90 3.90 3.81 9.05 9.52 9.32

Venezuela Brazil

FGRU Correct TA Data FGRU Correct TA Data

σY 4.56 1.47 4.72 4.52 1.46 4.64
σC/σY 0.51 0.51 0.87 0.44 0.45 1.10
σI/σY 3.81 3.89 3.42 1.67 1.74 1.65

Note: FGRU refers to moments reported in FGRU. Correct TA refers to the moments when time aggregation
is corrected and structural parameters are kept at the values calibrated in FGRU. Data refers to the data
moments obtained from HP-filtered data. Simulations are conducted with 200 repetitions of 96 periods using
the FGRU pruning.

standard deviation of TFP shocks σx, ii) the Lawrence J. Christiano, Martin Eichenbaum

and Charles L. Evans (2005)-type investment adjustment costs parameter φ, iii) the steady

state debt level, D̄, measured in output units, and iv) the holding costs of debt, ΦD, are

chosen by a moment matching procedure that minimizes a quadratic form of the distance

of the model moments to the data moments. The targets are four moments in quarterly

data: i) output volatility, ii) the volatility of consumption relative to output, iii) the relative

volatility of investment to output, and iv) the ratio of net exports over output. The net

exports share in output differs from the other three moments as it is not targeted at the

ergodic mean (obtained by simulating with random shocks), but at the ergodic mean in the

absence of shocks, ÑX/Ỹ , which is obtained by simulating without any shocks until con-

vergence.5 Our calibration follows the moment matching approach in FGRU and also uses

their pruning and simulation scheme together with the same winsorized shocks.6

Table 2 reports the resulting parameter estimates, while Table 3 shows the moments of

the recalibrated model.

5There is also a minor coding issue in the computation of the net exports to output share at the EMAS
in FGRU that we correct. See Appendix A.A4 for details.

6See Appendix D for details.
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Table 2—Parameters Obtained by Moment Matching

ΦD D̄ φ σx

Recalibration 5.92e-04 18.80 47.84 0.040
FGRU 1.00e-03 4.00 95.00 0.015

Note: first row: parameters obtained by moment matching to reflect the changes detailed in Section I. Second
row: parameters obtained by moment matching in FGRU.

Table 3 shows that the moment matching is successful: choosing the four parameters allows

to exactly match the four moments. From Table 2 it can be seen that moment matching

using the corrected model implies a volatility of TFP shocks that is 2.7 times the volatility

in FGRU.7 As documented in FGRU, TFP shocks alone do not result in a sufficient response

of investment and consumption to match their volatility relative to output. Given that

the amount of interest volatility is fixed by FGRU’s first stage estimates of the exogenous

processes, the transmission mechanism has to adjust. This is achieved by a halving of the

investment adjustment and portfolio holding costs, which brings the investment adjustments

costs to a more conventional level.8 The portfolio holding cost parameter is now estimated

to be even closer to the value of ΦD = 4.2e − 4 found in Mart́ın Uribe and Vivian Z. Yue

(2006) for a panel of emerging economies. The steady state debt level more than quadruples

relative to FGRU. But given the strong non-linearities in the model, this only results in

around twice the debt level in the ergodic mean.9

Figure 1 depicts the IRFs for the recalibrated model together with the original IRFs re-

ported in FGRU for the case of Argentina. As can be seen, a one standard deviation risk

shock now leads to a 63 percent larger output drop than originally reported in FGRU. This

is mostly driven by a bigger response of consumption and investment due to the deleveraging

caused by the now higher foreign debt becoming more risky. The optimal deleveraging is

7In the corrected FGRU model, the output volatility was only 1.77 percent compared to 4.77 percent in
the data. Given the fixed first stage estimates for the interest rate processes, the required 2.69 fold increase
in output volatility is achieved by increasing TFP volatility by almost exactly this amount. In quarterly
terms, our new estimates correspond to a TFP shock volatility of 5.5 percent and a TFP volatility of 12.3
percent.

8For reference, Christiano, Eichenbaum and Evans (2005) estimate a value of φ = 2.48 for the US.
9In the ergodic mean, this corresponds to an annual debt to GDP ratio of 12 percent compared to 6

percent in FGRU (see Appendix F). According to Carmen M. Reinhart and Kenneth Rogoff (2009), the
actual value of Argentinean external debt was 65 percent during the sample considered here.
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Table 3—Targeted Moments of the Recalibrated Corrected Model

σY σC/σY σI/σY ÑX/Ỹ

Recalibration 4.77 1.31 3.81 1.78
Data 4.77 1.31 3.81 1.78

FGRU 5.30 1.54 3.90 1.75

Note: first row: moments obtained from simulating the recalibrated corrected model 200 times for 96 periods
using the same pruning, simulation, filtering, and winsorizing scheme as FGRU. Second row: Moments
obtained from HP-filtered Argentinean data (1993Q1 - 2004Q3). Third row: moments reported in FGRU.
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Figure 1. Comparison of original IRFs vs. IRFs of the recalibrated model: Argentina

Note: blue solid line: IRFs at the EMAS reported in FGRU; red dashed line: IRFs at quarterly frequency
for the recalibrated corrected model

stronger compared to the original FGRU calibration, because of the lower estimated invest-

ment adjustment and portfolio holding costs.

To judge the importance of risk shocks for business cycle moments, it is instructive to
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Table 4—Variance Decomposition: Argentina

Data i) All
Shocks

ii) TFP
Only

iii) w/o
Vola

iv) Rate
Level

v) w/o
TFP

vi) Vola
Only

FGRU
Vola
Only

σy 4.77 4.77 4.47 4.52 0.60 1.17 0.42 0.16
σc 6.25 6.25 3.01 4.20 3.08 5.44 1.87 0.77
σi 18.17 18.17 6.37 11.37 9.31 16.81 6.14 3.09

Note: first column: moments obtained from HP-filtered Argentinean data (1993Q1 - 2004Q3); second column:
moments from 200 simulations of the recalibrated model; third column: TFP shocks only; fourth column:
without volatility shocks to spread and T-Bill rate; fifth column: only level shocks to the spread and the
T-Bill rate; sixth column: without TFP shocks; seventh column: only shocks to the volatility of spreads and
the T-Bill rate; eighth column: variance decomposition for volatility shocks only reported in FGRU.

consider a variance decomposition. Due to the non-linearity of the model and the resulting

interaction of shocks, such a variance decomposition cannot be performed analytically. One

way to gauge the relative importance of shocks is simulating the model with only a subset of

the shocks. We follow FGRU and consider six cases: i) with all shocks, ii) using only TFP

shocks while shutting off both level and volatility shocks to the interest rate in the form

of the T-bill rate and the risk spread, iii) using only TFP and level shocks to the interest

rate, iv) using only the level shocks to the interest rate, v) level and volatility shocks to the

interest rate and no TFP shocks, vi) only volatility shocks. Table 4 shows the results for

the recalibrated model. The last column also shows the variance for the “volatility shocks

only” case reported in FGRU. Compared to FGRU, the contribution of volatility shocks

to the standard deviation of output, consumption, and investment increases by factors of

2.6, 2.4, and 2 in the recalibrated model, respectively (see last column). Volatility shocks

alone account for 10 percent of output volatility and one third of investment volatility in the

recalibrated corrected model.

II. The Cyclicality and Volatility of Net Exports

A. Net Exports Keeping the Structural Parameters at the Values Calibrated in FGRU

FGRU compute the quarterly absolute deviation of net exports from the deterministic

steady state in their model solution using the national income accounting identity based on
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quarterly output, consumption, and investment. The formula they end up using is:10

(1) NXt −NX = Ŷt − Ĉt − Ît ,

where hats denote percentage deviations from the deterministic steady state and bars denote

steady state values, that is:

(2) Ŷt =
Yt − Ȳ
Ȳ

, Ĉt =
Ct − C̄
C̄

, Ît =
It − Ī
Ī

.

The correct formula should have weighted the percentage deviations of output, consump-

tion, and investment by their respective steady state values:

(3) NXt −NX = Ȳ Ŷt − C̄Ĉt − Ī Ît .

Table 5 reports the volatility and cyclicality of net exports reported in FGRU and the

volatility and cyclicality of net exports when the time aggregation error and the error in

the computation of net exports are corrected but the structural parameters are kept at the

values calibrated in FGRU. There are two main differences between the results reported by

FGRU and the results in the corrected model.11 First, net exports turn from approximately

acyclical in FGRU to procyclical in the corrected model. The procyclicality of net exports

in the corrected model contrasts with mostly countercyclical net exports in the data.12 The

reason why net exports become procyclical when the computation of net exports is corrected

is that equation (3) puts a relatively larger weight on output fluctuations than equation (1)

due to output in steady state being greater than both consumption and investment.13 This

increase in the weight of the “output component” of net exports mechanically increases the

comovement of net exports with output and hence increases the procyclicality.

10See Appendix A.A3 for details.
11The weighting issue also affects the current account implications after risk shocks reported in Figure 6

of FGRU. An updated version of the figure can be found in Appendix B.
12Explaining this behavior has motivated prominent papers arguing for the importance of permanent

TFP shocks (e.g. Aguiar and Gopinath, 2007) and financial frictions (e.g. Garćıa-Cicco, Pancrazi and Uribe,
2010). Andrea Raffo (2008) has argued that GHH-preferences might be instrumental in getting the correct
correlation. Adopting the latter may be a way to improve the model fit of FGRU.

13In equation (1) all three components entered with an equal weight of 1, while equation (3) in the FGRU-
model implies relative weights of 1, 0.84, and 0.13, for output, consumption, and investment, respectively.
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Table 5—Net Exports Keeping the Structural Parameters at the Values Calibrated in

FGRU

Argentina Ecuador

FGRU TA TA+NX Data FGRU TA TA+NX Data

ρNX,Y 0.05 0.05 0.43 -0.76 -0.04 -0.04 0.24 -0.60
σNX/σY 0.48 1.43 1.63 0.39 1.77 9.15 1.38 0.39

Venezuela Brazil

FGRU TA TA+NX Data FGRU TA TA+NX Data

ρNX,Y -0.10 -0.10 0.47 -0.11 0.18 0.17 0.78 -0.26
σNX/σY 1.60 13.33 1.87 0.18 0.60 1.95 3.87 0.18

Note: first and fifth column: moments reported in FGRU. Second and sixth column: moments obtained
using the FGRU simulation, but correcting the time aggregation (TA). Third and seventh column: moments
obtained using the FGRU simulation, but correcting the time aggregation and net export computation
(TA+NX). Fourth and eighth column: moments obtained from HP-filtered data. Simulations are conducted
with 200 repetitions of 96 periods using the FGRU pruning scheme. For Argentina, the same set of pseudo-
random numbers as in FGRU was used, while the simulation for the other countries had to rely on a different
pseudo-random number generator seed.

The second main difference between the results reported by FGRU and the results in the

corrected model is that the corrected model predicts a different volatility of net exports

(see Table 5). To understand the source of this difference, it is useful to start with the

benchmark case of Argentina. The relative volatility of net exports reported in FGRU is

0.48. Correcting time aggregation, the relative net export volatility increases by a factor of

three to 1.43, because the time aggregation error only affects output volatility (FGRU obtain

the volatility of net exports directly at quarterly frequency). Correcting the computation of

net exports leads to a minor further change in relative volatility. As a result, the corrected

relative volatility for the benchmark case of Argentina is approximately 3.4 times the value

reported in FGRU.

From Table 5 it can also be seen that for Ecuador, Venezuela, and Brazil, the difference

between the corrected relative volatility of net exports and the relative volatility reported

in FGRU is sometimes larger than for the benchmark case of Argentina and sometimes

smaller. The reason turns out to be the poor numerical convergence behavior of FGRU’s

measure of net export volatility. Because net exports can be negative, instead of using a

log-linear approximation, FGRU use the Isabel Correia, Joao C. Neves and Sergio Rebelo
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Figure 2. Convergence Behavior of the Relative Net Export Volatility Statistic

Note: relative volatility of net exports to output σNX/σY for the case of Argentina. Net exports transformed
to percentage deviations using the Correia, Neves and Rebelo (1995)-approximation. The blue solid line
shows the mean standard deviation (y-axis) over the up to 10,000 samples (x-axis) of simulating 96 months
of data. The black dashed dotted line shows the actual data moments. The data are based on the corrected
aggregation and net export computation. The black arrow indicates the value after 200 replications.

(1995)-approximation of the net exports

(4) N̂Xt ≡
NXt

|mean(NXt)|
− 1 .

This formula takes the percentage deviations from the absolute value of the mean in order

to preserve the sign.14 If the mean of net exports is close to 0, this can have drawbacks in

short simulations where the mean is imprecisely estimated.

This issue is illustrated in Figure 2. On the vertical axis the figure displays the volatility

of net exports relative to the volatility of output for the benchmark case of Argentina (blue

solid line), computed with the Correia, Neves and Rebelo (1995)-approximation as in FGRU

but correcting the time aggregation error affecting output volatility and the error in the

computation of net exports. The horizontal axis displays the number of simulation repetitions

over which the relative volatility has been computed. As in FGRU, each repetition is based

on a simulation of 96 time periods. The black arrow marks 200 simulations, which is the

number of simulation repetitions that FGRU use to obtain the predicted relative volatility

14Although this expression is already in the same units as output deviations from steady state, FGRU
additionally divide by a factor of 100. Thus, the relative volatility of net exports, σnx/σy is not 0.39 for
Argentinean data and 0.48 for the model as reported in FGRU, but 39 and 48, respectively. Subsequently,
we report the values in the form originally reported in FGRU.
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of net exports reported in Table 2. The figure suggests the simulated value of σNX/σY

varies substantially with the number of repetitions, even when we go to more than the

200 repetitions used by FGRU.15 Because of this instability, the seed of the pseudo-random

number generator may matter a lot.16 As we know the seed FGRU use for Argentina, but

not for Ecuador, Venezuela, and Brazil, this numerical instability drives a further wedge

between the relative volatility for Ecuador, Venezuela, and Brazil reported in FGRU and the

corrected relative volatilities we report in Table 5.

B. Net Exports in the Recalibrated Corrected Model

Table 6 reports the volatility and cyclicality of net exports. The recalibrated corrected

model continues to predict a positive correlation (0.43) of net exports with output.

Table 6—Untargeted Moments in the Recalibrated Corrected Model

ρNX,Y σNX/σY ρNX/Y,Y σNX/Y

Recalibration 0.43 1.08 0.41 6.55
Data -0.76 0.39 -0.75 3.47

FGRU 0.05 0.48 - -

Note: first row: moments obtained from simulating the recalibrated corrected model 200 times for 96 periods
using the same pruning, simulation, filtering, and winsorizing scheme as FGRU. Second row: Moments
obtained from HP-filtered Argentinean data (1993Q1 - 2004Q3). Third row: moments reported in FGRU,
based on time aggregation error and wrong net export computation.

Regarding the volatility of net exports we find that the recalibrated corrected model

overpredicts the relative volatility of net exports to the volatility of output by a factor

of 2.8. However, as FGRU measure net exports using the Correia, Neves and Rebelo (1995)-

approximation, which we have found to be numerically unstable in Figure 2, this may reflect

a numerical issue. In the last column of Table 5 we therefore also examine the volatility of

the net exports to output ratio, NXt/Yt. Due to this ratio being scaled with output, it does

15The convergence problem is driven by the numerator σNX , while the denominator σY converges quickly.
Moreover, the convergence problem only affects the volatility of net exports, but not its correlation with
output.

16This behavior can also be seen in FGRU’s official replication code. Changing the pseudo-random number
seed from the 2 they used to 20, leaving aggregation, net export computation, simulation length, and the
number of replications unchanged, leads to a tripling of σNX/σY from 0.48 to 1.46.
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not suffer from the same division by (almost) zero problem.17 It can be seen that with this

measure of the volatility of net exports, the model prediction is closer to the data than with

the Correia, Neves and Rebelo (1995)-measure used by FGRU. But the predicted volatility is

still almost twice the volatility of the net exports to output ratio in the data. From columns

1 and 3 in Table 6 it can be seen that for the cyclical properties of net exports it does not

matter much which measure of net exports is used.

III. Conclusion

FGRU find that risk shocks have important effects on aggregate variables and might con-

tribute to explaining the current account movements of small open developing economies.

We noted an error in the time aggregation of flow variables that results in the calibrated

model not matching the targeted data moments. Correcting this error and recalibrating the

model to fit the volatilities of output, consumption, and investment, we find that the peak

effect of a risk shock on output increases by 63 percent. The business cycle contribution of

volatility shocks also increases by more than a factor of two.

We also pointed to a weighting error in the net export computation that leads to reported

acyclical net exports when net exports are actually procyclical in the corrected model. We

found that net exports continued to be procyclical in the recalibrated model, thus being at

odds with one of the most robust stylized facts in emerging markets business cycles.
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Andreasen, Martin M., Jesús Fernández-Villaverde, and Juan F. Rubio-Ramı́rez.

2013. “The pruned state-space system for non-linear DSGE models: theory and empirical

applications.” NBER Working Papers 18983.

Backus, David K., Patrick J. Kehoe, and Finn E. Kydland. 1992. “International

real business cycles.” Journal of Political Economy, 100(4): 745–75.
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Technical Appendix - For Online Publication

Appendix A documents the coding issues in the Matlab implementation of the model sim-

ulation in more detail by showing the associated computer code of the Fernández-Villaverde

et al. (2011) (FGRU) replication files posted at http://www.aeaweb.org/articles.php?

doi=10.1257/aer.101.6.2530. FGRU calibrate their model at monthly frequency, per-

form a variable substitution to obtain a log-linearization, and use third-order perturbation

techniques to simulate the model. We make use of the third order perturbation capacities

of Dynare (Stéphane Adjemian, Houtan Bastani, Fréderic Karamé, Michel Juillard, Junior

Maih, Ferhat Mihoubi, George Perendia, Johannes Pfeifer, Marco Ratto and Sébastien Ville-

mot, 2011) to simulate the model.18 Appendix B presents the corrected version of Figure

6 in FGRU. Appendices C and D document the simulation and pruning schemes used for

IRF generation and moment computation. Appendix E compares the numerical convergence

behavior of the standard deviation of the Correia, Neves and Rebelo (1995)-approximation

and of the net export to output ratio. Appendix F compares the deterministic steady state,

the EMAS, and the ergodic mean.

A. The Coding Issues in the Published Replication Files

A1. Variable Substitution and Calibration to Monthly Frequency

As can be seen in Listing 1,19 a variable substitution is performed to obtain log-linearized

decision rules.

Listing 1 - The Model in emerging.nb

1 func1 = (Exp [ c ] ) ˆ−ups − Exp [ \ [ Lambda ] ] ;

func2 = betabeta ∗Exp [ \ [ Lambda ] p ] − Exp [ \ [ Lambda ] ] / ( 1 + Exp [ r ] ) +

3 Exp [ \ [ Lambda ] ] (dp − ds ) dtheta ;

func3 = −Exp [ p i ] +

5 betabeta ( (1 − d e l t a ) ∗Exp [ pip ] +

alpha Exp [ yp ] / Exp [ kp ] Exp [ \ [ Lambda ] p ] ) ;

7 func4 = thetheta (Exp [ h ] ) ˆ(

18The resulting policy functions are identical up to the 8th digit to the ones derived from Mathematica
by FGRU.

19Listing 1 and 2 are Mathematica code, all others Matlab.

http://www.aeaweb.org/articles.php?doi=10.1257/aer.101.6.2530
http://www.aeaweb.org/articles.php?doi=10.1257/aer.101.6.2530
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omega + 1) − (1 − alpha ) Exp [ y ] Exp [ \ [ Lambda ] ] ;

9 func5 = −Exp [ \ [ Lambda ] ] +

Exp [ p i ] (1 − phi /2 (Exp [ i n v e s t ] / Exp [ i n v e s t l a g ] − 1) ˆ2 −
11 phi Exp [ i n v e s t ] /

Exp [ i n v e s t l a g ] (Exp [ i n v e s t ] / Exp [ i n v e s t l a g ] − 1) ) +

13 betabeta ∗
Exp [ pip ] phi (Exp [ inve s tp ] /

15 Exp [ i n v e s t ] ) ˆ2 (Exp [ inve s tp ] / Exp [ i n v e s t ] − 1) ;

func6 = Exp [ y ] − (Exp [ k ] ) ˆ alpha (Exp [ g ] Exp [ h ] ) ˆ(1 − alpha ) ;

17 func8 = dp/(1 + Exp [ r ] ) − d + Exp [ y ] − Exp [ c ] −
Exp [ i n v e s t ] − (dp − ds ) ˆ2 dtheta /2 ;

19 func9 = Exp [ r ] − Exp [ r s ] − er − etb ;

func7 = −Exp [ kp ] + (1 − d e l t a ) Exp [

21 k ] + (1 − phi /2 (Exp [ i n v e s t ] / Exp [ i n v e s t l a g ] − 1) ˆ2) Exp [ i n v e s t ] ;

Listing 2 shows that the decision rules are for a model calibrated to monthly frequency

(r̄ = 0.02).

Listing 2 - The Model Calibration in emerging.nb

1 parmrule2 = {omega −> 1000 , dtheta −> 0 .001 , thetheta −> 1 , ups −> 5 ,

d e l t a −> 0 .014 , alpha −> 0 . 32 , phi −> 95 , r l i b −> 0 . 02 , ecap −> 0 ,

3 rhosigmar −> 0 . 94 , rhor −> 0 . 97 , sigmag −> Log [ 0 . 0 1 5 ] ,

ee ta −> 0 . 46 , meansigmar −> −5.71 ,

5 rhosigmatb −> 0 . 94 , rhotb −> 0 . 95 , eetb −> 0 . 13 , rhog −> 0 . 95 ,

meansigmatb −> −8.06} ;

A2. Time Aggregation: Moments and IRFs

Listing 3 - Variable Aggregation in irf moments.m

206 xaux = x c ’ ;

xauxt r imes t ra l=ze ro s ( s i z e ( xaux , 1 ) /3 ,3) ;

% Transform s imu la t i on from monthly to q u a r t e r l y

210 f o r i =1:3 ;

f o r j =1: s i z e ( xauxtr imest ra l , 1 ) ;

212 xauxt r imes t ra l ( j , i )=sum( xaux ( ( j−1)∗3+1:3∗ j , i ) ) ;

end

214 end
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216 % c d order : consump i n v e s t output

% Compute net export s us ing t rans fo rmat ion in Corre ia , Neves ,

218 % Rebelo : Bus iness Cycle in Small Open Economies ( European Economic

Review , 1995)

net exp = xauxt r imes t ra l ( : , 3 ) − xauxt r imes t ra l ( : , 2 ) − xauxt r imes t ra l

( : , 1 ) ;

220 net exp = ( net exp /abs (mean( net exp ) ) − 1) /100 ;

222 % HP f i l t e r data

% NOTE: HPF computes HP trend

224 % Please use your p r e f e r r e d HP f i l t e r in the next l i n e s

226 f o r i = 1 :3

c d ( : , i ) = xauxt r imes t ra l ( : , i ) − HPF( xauxt r imes t ra l ( : , i ) ,1600) ;

228 end

230 c d ( : , 4 ) = net exp − HPF( net exp ,1600 ) ;

Line 206 of Listing 3 assigns the matrix of simulated control variables at monthly frequency

x c (with the first three entries being consumption, investment, and output) into xaux. The

loop in lines 210-214 then aggregates monthly percentage deviations from steady state into

quarterly data for output, consumption, and investment (contained in the columns of xaux).

Instead of averaging the percentage deviations of these flow variables, they are accumulated.

As lines 226-230 show, these are the quarterly variables that are HP-filtered and used to

compute the moments.

Listing 4 - IRF aggregation in irf moments.m

% Unit o f time in model i s month

308 % IRFs are accumulated to trans form to quar t e r s

310 f i g u r e

312 f o r i = 1 : nc−3

i f i == 6 % Average q u a r t e r l y debt

314 aux = 100/( bss+x l a s t (6 ) ) ∗( x c ( i , 2 : Tplot )−x l a s t ( i ) ∗ ones (1 , Tplot−1) )

;

f o r j = 1 : ( Tplot−2)/3
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316 argenq ( i , j ) = sum( aux ( ( j−1)∗3+1:3∗ j ) ) ;

end

318 subplot (3 , 2 , i ) ; p l o t ( 0 : ( Tplot−2)/3−1, argenq ( i , : ) /3 , ’ LineWidth ’

, 1 . 5 ) ; a x i s t i g h t ; g r i d on

t i t l e ( varnm( i , : ) , ’ f o n t s i z e ’ , 13) ;

320 e l s e i f i == 5 % Annualized i n t e r e s t r a t e

aux = 10000∗ x s ( 8 , 2 : Tplot ) ;

322 f o r j = 1 : ( Tplot−2)/3

argenq ( i , j ) = sum( aux ( ( j−1)∗3+1:3∗ j ) ) ;

324 end

subplot (3 , 2 , i ) ; p l o t ( 0 : ( Tplot−2)/3−1 ,12∗ argenq ( i , : ) /3 , ’ LineWidth ’

, 1 . 5 ) ; a x i s t i g h t ; g r i d on

326 t i t l e ( varnm( i , : ) , ’ f o n t s i z e ’ , 13) ;

e l s e

328 aux = 100∗( x c ( i , 2 : Tplot )−x l a s t ( i ) ∗ ones (1 , Tplot−1) ) ;

f o r j = 1 : ( Tplot−2)/3

330 argenq ( i , j ) = sum( aux ( ( j−1)∗3+1:3∗ j ) ) ;

end

332 subplot (3 , 2 , i ) ; p l o t ( 0 : ( Tplot−2)/3−1, argenq ( i , : ) , ’ LineWidth ’ , 1 . 5 )

; a x i s t i g h t ; g r i d on

t i t l e ( varnm( i , : ) , ’ f o n t s i z e ’ , 13) ;

334 end

end

Listing 4 shows the time aggregation from monthly model IRFs to the quarterly IRFs

reported in FGRU. As can be seen in lines 313-319, the stock of debt is first expressed as

a percentage deviation from the EMAS (line 314) and then aggregated by taking the mean

response over three subsequent quarters: the subsequent three months are summed up (line

316) and then divided by 3 before plotting (line 318). Similarly, lines 321-325 take the

interest rate spread εr,t, average it and multiply it by 12× 100× 100 = 120,000 to transform

it into annualized basis points.

Line 328 computes the difference between the log of the monthly model variables (output,

consumption, investment, and hours) and the EMAS times 100, which has the interpretation

of a percentage deviation. Lines 329 to 331 sum up the monthly percentage deviations over

the quarter, before line 332 plots them without dividing by three as was the case in line 318.

As a result, the percentage deviations from steady state of the flow variables like output,
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consumption, investment, and hours are overstated by a factor of three when plotting the

IRFs.

To see this, consider e.g. quarterly output Yq as the sum of the three monthly outputs Ym,i:

(A1) Yq = Ym,1 + Ym,2 + Ym,3 .

Performing a log-linearization around the deterministic steady state yields:

(A2) ȲqŶq = ȲmŶm1 + ȲmŶm2 + ȲmŶm3 ,

where bars denote steady state values and hats percentage deviations from steady state.

Divide by Ȳq = 3Ȳm to obtain quarterly percentage deviations:

(A3) Ŷq =
Ȳm
Ȳq
Ŷm1 +

Ȳm
Ȳq
Ŷm2 +

Ȳm
Ȳq
Ŷm3 =

1

3

(
Ŷm1 + Ŷm2 + Ŷm3

)
.

Thus, the mean of the percentage deviations from steady state is appropriate, not the sum.

A3. Computing Net Exports

Line 219 of Listing 3 computes net exports as

(A4) NXt −NX = Ŷt − Ĉt − Ît ,

where X̂t ≈ Xt−X̄
X̄

denotes a variable in percentage deviations from steady state obtained from

summing up the percentage deviations (line 212 of Listing 3). The correct approximation is

(A5) NXt −NX = Ȳ Ŷt − C̄Ĉt − Ī Ît .

Line 220 performs a Correia, Neves and Rebelo (1995)-approximation of the net exports:

(A6) N̂Xt =
NXt

|mean(NXt)|
− 1 ,

but additionally divides by 100. For consistency reasons, the same is done when reporting the
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empirical standard deviation (see line 36 of Listing 5). This implies that both the empirical

and theoretical moments for net exports are underreported by a factor of 100 in the paper.

Listing 5 - Net Export display in empirical moments.m

di sp ( ’Moments Argentina : vo l c/ vo l y vo l invt / vo l y vo l net export / vo l y ’ )

36 [ s td ( cd ) std ( id ) std (nd) /100 ]/ std ( yd )

A4. Computing the Net Exports Share

Line 247 of Listing 6 computes the net exports to output share from the national income

accounting identity:

(A7) NXt = Yt − Ct − It = Dt −
Dt+1

1 + rt
+

ΦD

2

(
Dt+1 − D̄

)2

at the EMAS as

(A8)
ÑX

Ỹ
=

[
D̄ +

(
D̃ − D̄

)]
r̄−1
r̄

elog(Ȳ )+(log(Ỹ )−log(Ȳ ))
,

where the respective deviations of the EMAS from the deterministic steady state are stored

in xlast. But in the EMAS D̃ 6= D̄. Thus, the adjustment cost term in equation (A7) is not

zero. As a consequence, the permanent portfolio holdings costs paid at the EMAS are not

accounted for when computing the net exports required to finance the debt stock. For the

original calibration this coding issue is inconsequential due to the low debt adjustment costs.

But when recalibrating the model, the debt holding costs need to be taken into account as

one cannot know a priori if they are substantial.

Listing 6 - Net-Export Share Calibration in irf moments.m

244 % 2 . 2 . 1 Compute moments in Table 7 , Column M1

246 di sp ( ’ Ratio net export s / output ’ )

( ( bss+x l a s t (6 ) ) ∗( I ra t e −1)/ I r a t e ) /( exp ( adyss+x l a s t (3 ) ) )
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B. Figure FGRU6: IRFs Debt/Output, Current Account, Net Exports

Figure 6 in FGRU, reproduced here as Figure B1 due to non-availability of replication

codes, depicts the responses of the debt to output ratio, the current account, and net exports

to a risk shock. 2553Fernández-Villaverde et al.: Risk MattersVOL. 101 NO. 6

The last row in Figure 5 plots the IRFs in the M2 version of the model. In this row, 
we plot the IRFs after a one-standard-deviation level shock that is accompanied by a 
κ− standard deviation shock to volatility. The pattern of the IRFs is qualitatively the 
same as in the first row. The lesson from this third row is that our results are robust 
to the correlation between innovations.

We conclude by pointing out two features of our model. First, our results come in 
a model without working capital, a mechanism often added to improve the perfor-
mance of international macro models. As shown in the online Appendix, working 
capital makes our findings even stronger. Second, we do not have any of the real-
option effects of risk emphasized by the literature, for example, when we have irre-
versibilities (Bloom 2009). Introducing those effects explicitly is difficult with our 
perturbation approach because of the nondifferentiability of threshold decision rules 
created by real-option environments. However, real-option effects would increase 
the impact of shocks to volatility on investment. Therefore, our results are likely 
to be a lower bound to the implications of time-varying risk. Bloom, Jaimovich, 
and Floetotto (2008) explore the real-option effects of volatility shocks in a model 
calibrated for the US economy, but a more thorough investigation of the interaction 
between our higher-order terms and real-option effects remains an open question.

Ecuador.—Next, we turn to Ecuador, whose IRFs are plotted in Figure 7. The IRFs 
are similar to those in the Argentinian case. There is a decline in economic activity 
with responses qualitatively similar to, although somewhat smaller than, those for 
Argentina. After a shock to volatility, consumption drops 0.44 percent upon impact, 
investment 0.66 percent, and debt 0.08 percent. Investment falls for five quarters 

Figure 6. IRFs Debt/Output, Current Account, Net Exports
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Figure B1. IRFs Debt/Output, Current Account, Net Exports

Note: Reproduced Figure 6 from Fernández-Villaverde et al. (2011), p. 2553.

FGRU report the debt to output ratio IRF in that figure not in percentage deviations

from the EMAS, but as the absolute value. Figure B2 displays that the debt to output ratio

dropped from about 0.293 by about 2.9 percentage points to 0.263 after 11 periods. But

this is inconsistent with the FGRU-IRFs in Figure C1, which show that debt dropped by

3.873 percent while output dropped by 0.1907 percent. Thus, the new debt-to-output-ratio

should be up to first order (1−0.03873)D/((1−0.001907)Y ) ≈ 0.963D/Y , i.e. it should drop

by about 3.7 percent (not percentage points). The net export IRF is affected by from the

incorrect weighting used in their computation as shown in section II. Regarding the current

account, FGRU state that it is in “percentage points of [its] ergodic mean”. But this is not

possible for it is defined as CAt = Dt − Dt−1 and thus has ergodic mean zero. Thus, it is

unclear what the lower left panel of Figure B2 depicts.

The left column of Figure B2 shows the corrected version of Figure 6 in FGRU that uses

output to normalize net exports and the current account, giving them the interpretation of
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Figure B2. Debt/Output, Current Account, and Net Exports Dynamics.

Note: Left column: IRFs from the corrected FGRU model; Right column: IRFs from the recalibrated
corrected model. Row 1: Debt-to-quarterly-GDP ratio in percent of quarterly GDP. Row 2: Current account
to GDP ratio in absolute deviation from the EMAS. Row 3: Net exports to GDP ratio in absolute deviation
from the EMAS.

being in output units. As can be seen, in the corrected model with the original calibration

the current account implications of risk shocks are rather muted.

The right column of Figure B2 displays the IRFs from the recalibrated corrected model

quantifying the central “debt reduction mechanism”. After a one standard deviation risk

shock, the debt to quarterly output ratio falls by about 6.5 percentage points after three

years, while current account and net exports increase by about 1 percent of output on impact

in order to finance the deleveraging.
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C. IRFs at the Ergodic Mean

C1. IRF Generation

The use of higher-order perturbation techniques to solve the model implies that the model

solution is not linear anymore. Thus, the IRFs will depend on both the sequence of future

shocks, ut, and the point in the state space at which the IRFs are started, i.e. the past

history of shocks, Ωt. To circumvent this problem, Gary Koop, M. Hashem Pesaran and

Simon M. Potter (1996) suggested the concept of Generalized Impulse Response Functions

(GIRFs) that e.g. allow considering “representative” IRFs at the ergodic mean. The GIRF

at time t+ n after a shock ut is given by

(C1) GIRFn (ut,Ωt−1) = E [Yt+n|ut,Ωt−1]− E [Yt+n|Ωt−1] ,

that is, given a point in the state space, the future shock realizations are averaged out.

In contrast, FGRU also condition on future shocks by setting them to 0 when generating

their IRFs and start the IRFs at the EMAS. Denote the future realization of shocks with

Ωfut. FGRU effectively use the definition

IRFn (νt,Ωt) = E
[
Yt+n|ut,Ωt−1 = {. . . , 0} ,Ωfut

t+1 = {0, . . .}
]

− E
[
Yt+n|0,Ωt−1 = {. . . , 0} ,Ωfut

t+1 = {0, . . .}
]
,(C2)

where the expected values can be dropped as everything is deterministic.

This choice of computing the IRFs at the EMAS has two important implications. First,

computing the non-linear IRFs not as the expected difference in responses as in (C1) but

also conditioning on future shocks and setting them to 0, only allows capturing part of the

economic effects of risk shocks. To see this, inspect the particular pruning algorithm20 used

20As first noted in Jinill Kim, Sunghyun Kim, Ernst Schaumburg and Christopher A. Sims (2008), higher
order perturbation solutions tend to explode due to the accumulation of terms of increasing order. For
example, in a second order approximated solution, the quadratic term at time t will be raised to the power
of two in the quadratic term at t + 1, thus resulting in a quartic term, which will become a term of order
8 at t + 2 and so on. As a solution, Kim et al. (2008) proposed “pruning” all terms of higher order, i.e.
computing the quadratic term at t + 1 by only squaring the first-order term from time t. This procedure,
however, is not easily generalized to third order as there are several potential ways of pruning.
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in FGRU for IRF-generation.21 Consider a generic model solution of the form

(C3) xt = g
(
xstatest−1 , ut, σ

)
,

where xt is an nx× 1 vector of endogenous variables, xstatest−1 is the vector of states contained

in xt,
22 ut is an nu × 1 vector of mean zero disturbances, and σ is the perturbation param-

eter. Denote partial derivatives with subscripts. The pruned third order solution for the

endogenous variables’ deviations from their steady state, x̂3rd
t = x3rd

t − x̄, used by FGRU, is

computed from the recursion

x̂3rd
t =gxx̂

3rd,states
t−1 + guut

+
1

2

[
gxx
(
x̂1st,states
t−1 ⊗ x̂1st,states

t−1

)
+ 2gxu

(
x̂1st,states
t−1 ⊗ ut

)
+ guu (ut ⊗ ut) + gσσσ

2
]

+
1

6


gxxx

(
x̂1st,states
t−1 ⊗ x̂1st,states

t−1 ⊗ x̂1st,states
t−1

)
+ guuu (ut ⊗ ut ⊗ ut)

+3gxxu
(
x̂1st,states
t−1 ⊗ x̂1st,states

t−1 ⊗ ut
)

+ 3gxuu
(
x̂1st,states
t−1 ⊗ ut ⊗ ut

)
+3gxσσσ

2x̂1st,states
t−1 + 3guσσσ

2ut

(C4)

x̂1st
t =gxx̂

1st,states
t−1 + guut .(C5)

That is, all higher order terms are based on the first-order terms.23 The recursion in equations

(C4)-(C5) is completed by an initial condition24 of:

x̂3rd
0 = x̃− x̄(C6)

x̂1st
0 = 0 .(C7)

Because x̂1st
0 = 0 and all higher order terms in equation (C4) are based on it, the effect

21The IRF-pruning scheme differs from the scheme used for simulations, see Appendix D.
22We use the Dynare notation that stacks the state transition and observation equations (see Adjemian

et al., 2011).
23This choice results in an inferior performance compared to e.g. the pruning scheme by Martin M.

Andreasen, Jesús Fernández-Villaverde and Juan F. Rubio-Ramı́rez (2013) that augments the state space to
keep track of first to third order terms and uses the Kronecker product of the first and second order terms
to compute the third order term (see Hong Lan and Alexander Meyer-Gohde, 2013b, for more details).

24As shown in Lan and Meyer-Gohde (2013b) there are infinitely many different past shock realizations
that can lead to being at a particular point in the state-space at time 0, all of them associated with particular
values for x̂3rd0 and x̂1st0 . Equations (C6) to (C7) are consistent with the EMAS in that one particular shock
combination giving rise to these values is the total absence of past shocks.
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of the initial condition x̃ − x̄ will mostly be neglected. Equation (C5) effectively is a first-

order policy function, which is known not to react to risk shocks, except for the state σt−1.

Considering (C4), this and the conditioning on all shocks being 0 ∀ t + i, i > 0 implies

that, in the terminology of Hong Lan and Alexander Meyer-Gohde (2013a), only the “risk

adjustment channel” is present (via the constant term 1/2× gσσ × σ2 and the time-varying

risk-adjustment 1/2 × guσσ × σ2 × ut in period t where ut 6= 0). But the difference in

“amplification effects” introduced by (risk) shocks and embedded in the other higher order

terms is totally absent. Thus, the difference in the interaction between the location in the

state space and future shocks, introduced by the risk shock, is not captured.

Second, the IRFs are computed at a particular point in the pruned state space where

agents factor in the uncertainty of the system, but where there has been an infinite absence

of shocks. Due to the absence of shocks and thus of “amplification effects” embedded in the

higher order terms, agents will dare to incur a relatively high amount of debt. As shown

in Table F1, the difference between the EMAS and the unconditional mean amounts to 20

percent.25

C2. IRF Generation

Figure C1 compares the responses after a one-standard deviation interest rate risk shock

reported in FGRU (red dashed lines) with the responses when the time aggregation error

is corrected (blue solid lines). It can be seen that correcting the time aggregation error

mechanically results in the size of the shock response dropping to one third of the value

reported in FGRU. For example, instead of dropping by 0.19 percent, output falls by a 0.06

percent at its trough.

25An alternative would be to compute GIRFs at the true ergodic mean using the methods proposed in
Andreasen, Fernández-Villaverde and Rubio-Ramı́rez (2013).
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Figure C1. Comparison of Quarterly IRFs for Different Aggregation Schemes.

Note: IRFs to a one-standard deviation shock to interest rate risk premium uncertainty. Blue solid line: cor-
rect aggregation by averaging percentage deviations of monthly flow variables; red dashed line: aggregation
by summing up monthly percentage deviations of flow variables.



RISK MATTERS: A COMMENT 27

D. Starting Simulations at the Ergodic Mean in the Absence of Shocks

The simulations conducted in FGRU use a different pruning scheme than the IRF-generation.

Denote the time periods of the simulations with t = 1, . . . , 96, the simulation repetition with

i = 1, . . . , 200, and a generic variable with yt,i.

1) At time t = 1

• set the third order term of the states x3rd,states
1,i to the EMAS and the non-state

elements of x3rd
1,i to the deterministic steady state

If i = 1

• set the first-order term x1st
1,1 to the deterministic steady state

• set the shock term used in the first-order term to u1st
2,1 = 0

• draw a random shock vector u2,1

else if i 6= 1

• set the first-order state term x1st,states
1,i to x1st,states

96,i−1

• set the shock term used in the first-order term to u1st
2,i = u1st

97,i−1

• set u2,i = u2,1

2) for t = 2 to 96:

• Use the unpruned state space representation to compute the time t values of the

exogenous state variables

• To compute the time t values of the endogenous states, use the recursion

x̂3rd
t,i =gxx̂

3rd,states
t−1,i + guut,i

+
1

2

[
gxx
(
x̂1st,states
t−1,i ⊗ x̂1st,states

t−1,i

)
+ 2gxu

(
x̂1st,states
t−1 ⊗ u1st

t,i

)
+ guu

(
u1st
t,i ⊗ u1st

t,i

)
+ gσσσ

2
]

+
1

6


gxxx

(
x̂1st,states
t−1,i ⊗ x̂1st,states

t−1,i ⊗ x̂1st,states
t−1,i

)
+ guuu

(
u1st
t,i ⊗ u1st

t,i ⊗ u1st
t,i

)
+3gxxu

(
x̂1st,states
t−1,i ⊗ x̂1st,states

t−1,i ⊗ u1st
t,i

)
+ 3gxuu

(
x̂1st,states
t−1,i ⊗ u1st

t,i ⊗ u1st
t,i

)
+3gxσσσ

2x̂1st,states
t−1,i + 3guσσσ

2u1st
t,i



(D1)

x̂1st
t,i =gxx̂

1st,states
t−1,i + guu

1st
t,i

(D2)
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• Draw a random shock vector ut+1,i

• Set u1st
t+1,i = ut+1,i

• Use x̂3rd
t,i as the simulated variable

Four things are noteworthy. First, the simulations for the exogenous laws of motion for TFP,

the T-bill rate, the country risk premium, and the two volatility processes do not use prun-

ing. They are instead based on iterating the full third-order approximated policy function

forward. This seems to pose no practical problems in the simulations we conducted as we

encountered no explosive behavior. But using the full higher-order polynomial approxima-

tion to the true stationary exogenous law of motion implies that the stability properties of

the underlying policy function are not necessarily inherited (see e.g. Wouter J. Den Haan

and Joris De Wind, 2012). Thus, the exogenous laws of motion may suffer from exactly the

problem for which using a pruning algorithm was advocated. Second, the actual simulations

only start at time t = 2, because for t = 1 the endogenous variables are assumed to be

at the deterministic steady state. Nevertheless, this first time point with zero deviations

from steady state is included in the 96 time periods used to compute simulated moments.

As the simulated system will on average transition to the ergodic mean, this introduces an

initial jump from t = 1 to t = 2, which even the subsequent HP-filtering will not completely

smooth out. Third, for the first actual simulation period, i.e. t = 2, the simulated first and

third order terms are based on different structural shocks, u1st
2,i and u2,i, respectively. Hence,

agents in the model are assumed to react to two different shock realizations at the same

time. Fourth, the first shock u2,i at t = 2 is always equal to the one of the first simulation,

i.e. u2,1.

One important implication of this particular simulation scheme is that due to starting at

the EMAS for the third order term and then hitting the equilibrium system with shocks, the

simulations will slowly transition to the ergodic distribution. As the simulations are always

restarted at this point after 96 periods and there is no burnin, most draws will not yet come

from the ergodic distribution. Put differently, the moments from 10,000 simulations of 96

periods and the ones from one simulation of 960,000 periods considerably differ, as shown in

Table D1.
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Table D1—Second Moments of Long vs. Short Simulations

Argentina Ecuador

Data Short Sim. Long Sim. Data Short Sim. Long Sim.

σY 4.77 1.78 2.06 2.46 0.73 0.94
σC/σY 1.31 1.52 1.72 2.48 2.22 2.19
σI/σY 3.81 4.06 5.56 9.32 9.89 11.86

σNX/σY 0.39 4.72 5.80 0.65 2.41 0.98
ρNX,Y -0.76 0.41 0.38 -0.60 0.24 0.23

ÑX/Ỹ 1.78 1.75 1.75 3.86 3.95 3.95
Venezuela Brazil

Data Short Sim. Long Sim. Data Short Sim. Long Sim.

σY 4.72 1.51 1.70 4.64 1.50 1.67
σC/σY 0.87 0.51 0.51 1.10 0.45 0.46
σI/σY 3.42 3.94 4.57 1.65 1.73 2.16

σNX/σY 0.18 0.34 0.31 0.23 6.23 2.00
ρNX,Y -0.11 0.45 0.37 -0.26 0.77 0.71

ÑX/Ỹ 4.07 4.14 4.14 0.10 0.52 0.52

Note: first and fourth column: moments obtained from HP-filtered data. Second and fifth column: moments
of the FGRU model with corrected aggregation and net export computation, based on 10,000 replications
of 96 periods. Third and sixth column: moments of the FGRU model with corrected aggregation and net
export computation, based on 1 replication of 960,000 periods
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E. Convergence Behavior of the Net Exports to Output Ratio
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Figure E1. Convergence Behavior of Different Net Export Volatility Statistics in the

Recalibrated Model

Note: top panel: relative volatility of net exports to output σNX/σY . Net exports transformed to percentage
deviations using the Correia, Neves and Rebelo (1995)-approximation. Bottom panel: standard deviation of
the net exports to output ratio σNX/Y . The blue solid line shows the mean standard deviation (y-axis) over
the up to 10,000 samples (x-axis) of simulating 96 months of data. The black dashed dotted line shows the
actual data moments. The data are based on the corrected aggregation and net export computation. The
black arrow indicates the value after 200 replications.
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F. Steady State, EMAS, and Ergodic Mean

Table F1—Steady State, EMAS, and Ergodic Mean: FGRU Calibration

Argentina Ecuador

Steady
State

EMAS Erg. Mean Steady
State

EMAS Erg. Mean

D 4.000 2.551 2.090 13.000 12.040 12.072
K 3.293 3.287 3.309 3.745 3.757 3.757
C 0.878 0.888 0.905 0.945 0.951 0.951
H -0.004 -0.004 -0.004 -0.004 -0.004 -0.004
Y 1.051 1.049 1.056 1.196 1.200 1.200
I -0.975 -0.982 -0.969 -0.523 -0.512 -0.518

NX/Y 0.027 0.018 0.005 0.043 0.039 0.038
CA 0.000 0.000 0.000 0.000 0.000 0.000

Venezuela Brazil

Steady
State

EMAS Erg. Mean Steady
State

EMAS Erg. Mean

D 22.000 21.422 21.445 3.000 2.709 2.651
K 4.002 4.009 4.010 4.001 4.003 4.005
C 0.982 0.985 0.985 1.030 1.031 1.032
H -0.004 -0.004 -0.004 -0.004 -0.004 -0.004
Y 1.278 1.280 1.280 1.278 1.278 1.279
I -0.267 -0.260 -0.265 -0.267 -0.266 -0.265

NX/Y 0.043 0.041 0.041 0.006 0.005 0.005
CA 0.000 0.000 -0.000 0.000 0.000 -0.000

Note: first column: deterministic steady state, second column: ergodic mean in the absence of shocks
(EMAS); third column: theoretical mean based on the third-order pruned state space of Andreasen,
Fernández-Villaverde and Rubio-Ramı́rez (2013). D, NX/Y , and CA are reported in levels, while all other
variables are in logs. The model is at monthly frequency.

Table F1 implies that D/Yannual = 2.09/(12 × exp(1.056)) ≈ 0.0606. In the recalibrated

model, D/Yannual = 4.251/(12× exp(1.106)) ≈ 0.1172.
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Table F2—Steady State, EMAS, and Ergodic Mean: Recalibration

Argentina

Steady State EMAS Ergodic Mean

D 18.802 3.595 4.251
K 3.294 3.461 3.463
C 0.750 0.933 0.919
H -0.003 -0.004 -0.004
Y 1.052 1.105 1.106
I -0.975 -0.807 -0.860

NX/Y 0.129 0.018 0.022
CA 0.000 0.000 0.000

Note: first column: deterministic steady state, second column: ergodic mean in the absence of shocks
(EMAS); third column: theoretical mean based on the third-order pruned state space of Andreasen,
Fernández-Villaverde and Rubio-Ramı́rez (2013). D, NX/Y , and CA are reported in levels, while all other
variables are in logs. The model is at monthly frequency.


