Quasi triangular matrices multiplication in
Kalman filter estimation



Chapter 1

Problem setting

We want to optimize the matrix multiplication used in the estimate of the Kalman
filter.

In particular we want to speed up the computation of the following steps:

Ta; 11 (1.1)
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where
T is upper quasi-triangular matrix;
P is symmetric (with diagonal non negative diagonal elements);

a is a vector.



Chapter 2

Strategy

The main idea is to replace right multiplication *7’ with transpose, where T is
a lower quasi-triangular matrix. Given the property of the matrices 7 and P and
since we need to compute T'ST’ we propose the following strategy.

We first write (see QT2Ld.f90 and QT2T.f90)
T=T+Ly (2.1)

as the sum of a upper triangular matrix 77and a lower sub diagonal matrix
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where only elements L;(i,i — 1) may be different from zeros.

We also write the symmetric matrix (see S2U.f90 and S2D.f90)

P=U+D+U’ (2.2)
where
0 P ... Py,
0
U =
Pnfln
0 0 0



and
Py 0 ... 0

Py

21 Ta

According to decomposition (2.1) we write

Ta=Ta+ Lya.

It is easy to see that Lya = (0,12 14z, ..., Ty n—1a,)" (see LdV.f90). The multipli-

cation (see TV.f90) Tia consists in w operations.

22 TPT

According to decomposition (2.1) and (2.2) we write

TPT' =(T\ + Ly)P(T{ + L)) (2.3)
=T\PT' +T\PL, + L,PT| + L,PL),.

We observe that L;M , where M is an arbitrary matrix, is equal to the matrix whose
only non zero rows are those corresponding to the non zero elements of L; (see
LdM.f90).

We can use the symmetricitity of P and consider as a whole T1PL), + L,PT{. We
first compute X = TP (see TM.f90), we have

T\SL), + LyST{ =XLg+ LyX'
=LsX'+ (LX)
In this way we have replaced right multiplication by 7’ and, instead, we use left

multiplication by L; (which we know it is very low computational demanding)
and a matrix transpose.



The computation of L;SL, is quite straightforward (see LdSLd.f90), since it ends
out top be equal to the matrix whose elements are given by

Ld(iai_ I)S(l_ 17j_ l)Ld(.]vj_ 1)7
1.e. the only non zero terms are those corresponding to the non zeros elements of
Ly.

To compute 77 PT]| , we propose two different approaches:

direct computation: we directly compute 77 P7] using properties of triangular
and symmetric matrices (see TSTt.f90)

decomposition of symmetric matrices: if we may use multiple processors, we
may think of computing 7; PT{ by applying (2.2). We write

T\PT] =T\(U +D+U"T] (2.4)
=T\UT| +T,DT{ + T,U'T].

We observe that the diagonal elements of S are all non negative. We then define
v/Das the diagonal matrix whose elements are the square roots of the diagonal
elements of S (which is D in (2.2)).

Let Yy = T1U (see TU.f90) and Yp = T;v/D (see TD.90).
Equation (2.4) becomes

TWUT{ +T\DT] + TY\U'T{ =Yy T{ +YpY},+ T Yy
=T1Yy + (TYy) + YpY),

Once again instead of right multiplication by a lower triangular matrix (7}), we
need to compute matrix transposes.

Setting X; = Ly X' = Ly(Ti P)' (see LAM.f90), X, = T1Y/, = T1 (T1U )’ (see TM..f90)
and X3 = Yp, we have
TPT' =X +X{ + L,PL}
+Xo + X5 + X3X3,

which can be also thought in terms of parallel routines (if multiple processors are
available).



Chapter 3

Routines

In order to apply the proposed strategies, we have the following FORTRAN 90
routines:

e QT2Ld.f90: extracts the lower diagonal part L, from an upper quasi-triangular
matrix QT

o QT2T.190: extracts the upper triangular part 7" from an upper quasi-triangular
matrix QT

e S2D.f90: extracts the square diagonal part /D from a symmetric matrix §
e S2U.f90: extracts the over diagonal part U from a symmetric matrix S
e TV.f90: T xV where T is upper triangular and V' is a vector

e L.dV.f90: L;*V where L; is lower diagonal and V is a vector

e LdSLd.f90: L, S+ L], where L is lower diagonal and S is symmetric
o LdAM.f90: L; *x M where L, is lower diagonal and M is arbitrary

e TD.f90: T xV where T is upper triangular and D is a diagonal

e TM.f90: T x M where T is upper triangular and M is arbitrary

e TU.f90: T «U where T is upper triangular and U is over diagonal

e TUt.f90: T U’ where T is upper triangular and U is over diagonal

e TT.f90: T; * T,where both T1and T,are upper triangular matrices

e TSTt.f90: T xS+ T’ where T is upper triangular and S is a symmetric



Chapter 4

Sequence of routine’s calls

Given an upper quasi-triangular matrix 7 and a symmetric matrix P, whose di-
mension is equal to n and a vector a, we do the following steps:

Ta:
1. Ty = QT2T(QT,n) and Ly = QT2L,(QT,n);
2. Ta=LdV(Lg,a,n)+TV(Ti,a,n).

TPT':

Case 1:
1. Ty = QT2T(QT,n) and Ly = QT2L,(QT, n);
2. X=TM(T,S,n) and X, = LdSLd(L4,P,n);
3. Xy =LdM(Ly,X',n), X3 = TSTt(T},P,n);
4. TPT' =X +X{ + X+ X3

Case 2:
1. Ty = QT2T(QT,n) and Ly = QT2L,(QT,n);
2. U = S2U(P,n) and /D = S2D(S,n);
3. X =TM(T},S,n), Yy = TU(T;,U,n) and Yp = TD(T},D,n);

4, X1 = LdM(Ld,X/,n), X2 = TM(Tl,YU,n), X3 = TM(YD,YII),I’Z) and X4 =
LdSLd(Ly,P,n);

5. TPT' =X, +X|{ + X4+ X2 + X} + X;.



