
Quasi triangular matrices multiplication in
Kalman filter estimation

Chapter 1

Problem setting

We want to optimize the matrix multiplication used in the estimate of the Kalman
filter.

In particular we want to speed up the computation of the following steps:

Tat−1|t−1 (1.1)

T Pt−1|t−1T ′

where

T is upper quasi-triangular matrix;

P is symmetric (with diagonal non negative diagonal elements);

a is a vector.

1

Chapter 2

Strategy

The main idea is to replace right multiplication ∗T ′ with transpose, where T is
a lower quasi-triangular matrix. Given the property of the matrices T and P and
since we need to compute T ST ′ we propose the following strategy.

We first write (see QT2Ld.f90 and QT2T.f90)

T = T1 +Ld (2.1)

as the sum of a upper triangular matrix T1and a lower sub diagonal matrix

Ld =


0 0 . . . 0 0
∗ 0 . . . 0 0
... ∗ . . . 0 0

. . . ∗ 0 0
0 0 . . . ∗ 0


where only elements Ld(i, i−1) may be different from zeros.

We also write the symmetric matrix (see S2U.f90 and S2D.f90)

P = U +D+U ′ (2.2)

where

U =


0 P12 . . . P1n

0 . . .
...

Pn−1n
0 . . . 0 0


2

and

D =


P11 0 . . . 0

P22
... . . .

0 . . . Pnn


.

2.1 Ta

According to decomposition (2.1) we write

Ta = T1a+Lda.

It is easy to see that Lda = (0,T2,1a2, . . . ,Tn,n−1an)′ (see LdV.f90). The multipli-
cation (see TV.f90) T1a consists in N∗N∗(N+1)

2 operations.

2.2 T PT ′

According to decomposition (2.1) and (2.2) we write

T PT ′ =(T1 +Ld)P(T ′1 +L′d) (2.3)
=T1PT ′+T1PL′d +LdPT ′1 +LdPL′d.

We observe that LdM , where M is an arbitrary matrix, is equal to the matrix whose
only non zero rows are those corresponding to the non zero elements of Ld (see
LdM.f90).

We can use the symmetricitity of P and consider as a whole T1PL′d + LdPT ′1. We
first compute X = T1P (see TM.f90), we have

T1SL′d +LdST ′1 =XLd +LdX ′

=LdX ′+(LdX ′)′.

In this way we have replaced right multiplication by T ′ and, instead, we use left
multiplication by Ld (which we know it is very low computational demanding)
and a matrix transpose.

3

The computation of LdSL′d is quite straightforward (see LdSLd.f90), since it ends
out top be equal to the matrix whose elements are given by

Ld(i, i−1)S(i−1, j− i)Ld(j, j−1),

i.e. the only non zero terms are those corresponding to the non zeros elements of
Ld .

To compute T1PT ′1 , we propose two different approaches:

direct computation: we directly compute T1PT ′1 using properties of triangular
and symmetric matrices (see TSTt.f90)

decomposition of symmetric matrices: if we may use multiple processors, we
may think of computing T1PT ′1 by applying (2.2). We write

T1PT ′1 =T1(U +D+U ′)T ′1 (2.4)
=T1UT ′1 +T1DT ′1 +T1U ′T ′1.

We observe that the diagonal elements of S are all non negative. We then define√
Das the diagonal matrix whose elements are the square roots of the diagonal

elements of S (which is D in (2.2)).

Let YU = T1U (see TU.f90) and YD = T1
√

D (see TD.f90).

Equation (2.4) becomes

T1UT ′1 +T1DT ′1 +T1U ′T ′1 =YU T ′1 +YDY ′D +T1YU

=T1YU +(T1YU)′+YDY ′D.

Once again instead of right multiplication by a lower triangular matrix (T ′1), we
need to compute matrix transposes.

Setting X1 = LdX ′= Ld(T1P)′ (see LdM.f90), X2 = T1Y ′U = T1(T1U)′ (see TM.f90)
and X3 = YD, we have

T PT ′ =X1 +X ′1 +LdPL′d
+X2 +X ′2 +X3X ′3,

which can be also thought in terms of parallel routines (if multiple processors are
available).

4

Chapter 3

Routines

In order to apply the proposed strategies, we have the following FORTRAN 90
routines:

• QT2Ld.f90: extracts the lower diagonal part Ld from an upper quasi-triangular
matrix QT

• QT2T.f90: extracts the upper triangular part T from an upper quasi-triangular
matrix QT

• S2D.f90: extracts the square diagonal part
√

D from a symmetric matrix S

• S2U.f90: extracts the over diagonal part U from a symmetric matrix S

• TV.f90: T ∗V where T is upper triangular and V is a vector

• LdV.f90: Ld ∗V where Ld is lower diagonal and V is a vector

• LdSLd.f90: Ld ∗S∗L′d where Ld is lower diagonal and S is symmetric

• LdM.f90: Ld ∗M where Ld is lower diagonal and M is arbitrary

• TD.f90: T ∗V where T is upper triangular and D is a diagonal

• TM.f90: T ∗M where T is upper triangular and M is arbitrary

• TU.f90: T ∗U where T is upper triangular and U is over diagonal

• TUt.f90: T ∗U ′ where T is upper triangular and U is over diagonal

• TT.f90: T1 ∗T2where both T1and T2are upper triangular matrices

• TSTt.f90: T ∗S∗T ′ where T is upper triangular and S is a symmetric

5

Chapter 4

Sequence of routine’s calls

Given an upper quasi-triangular matrix T and a symmetric matrix P, whose di-
mension is equal to n and a vector a, we do the following steps:

Ta:

1. T1 = QT 2T (QT,n) and Ld = QT 2Ld(QT,n);

2. Ta = LdV (Ld,a,n)+TV (T1,a,n).

T PT ′:

Case 1:

1. T1 = QT 2T (QT,n) and Ld = QT 2Ld(QT,n);

2. X = T M(T1,S,n) and X2 = LdSLd(Ld,P,n);

3. X1 = LdM(Ld,X ′,n), X3 = T STt(T1,P,n);

4. T PT ′ = X1 +X ′1 +X2 +X3

Case 2:

1. T1 = QT 2T (QT,n) and Ld = QT 2Ld(QT,n);

2. U = S2U(P,n) and
√

D = S2D(S,n);

3. X = T M(T1,S,n), YU = TU(T1,U,n) and YD = T D(T1,D,n);

4. X1 = LdM(Ld,X ′,n), X2 = T M(T1,YU ,n), X3 = T M(YD,Y ′D,n) and X4 =
LdSLd(Ld,P,n);

5. T PT ′ = X1 +X ′1 +X4 +X2 +X ′2 +X3.

6

