Quasi triangular matrices multiplication in Kalman filter estimation

Chapter 1

Problem setting

We want to optimize the matrix multiplication used in the estimate of the Kalman filter.

In particular we want to speed up the computation of the following steps:

$$
\begin{array}{r}
T a_{t-1 \mid t-1} \tag{1.1}\\
T P_{t-1 \mid t-1} T^{\prime}
\end{array}
$$

where
T is upper quasi-triangular matrix;
P is symmetric (with diagonal non negative diagonal elements);
a is a vector.

Chapter 2

Strategy

The main idea is to replace right multiplication $* T^{\prime}$ with transpose, where T is a lower quasi-triangular matrix. Given the property of the matrices T and P and since we need to compute $T S T^{\prime}$ we propose the following strategy.

We first write (see QT2Ld.f90 and QT2T.f90)

$$
\begin{equation*}
T=T_{1}+L_{d} \tag{2.1}
\end{equation*}
$$

as the sum of a upper triangular matrix T_{1} and a lower sub diagonal matrix

$$
L_{d}=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 0 \\
* & 0 & \ldots & 0 & 0 \\
\vdots & * & \ldots & 0 & 0 \\
& \ddots & * & 0 & 0 \\
0 & 0 & \ldots & * & 0
\end{array}\right)
$$

where only elements $L_{d}(i, i-1)$ may be different from zeros.
We also write the symmetric matrix (see S2U.f90 and S2D.f90)

$$
\begin{equation*}
P=U+D+U^{\prime} \tag{2.2}
\end{equation*}
$$

where

$$
U=\left(\begin{array}{ccccc}
0 & P_{12} & \cdots & & P_{1 n} \\
0 & \ddots & & & \\
\vdots & & & & \\
& & & & P_{n-1 n} \\
0 & \cdots & & 0 & 0
\end{array}\right)
$$

and

$$
D=\left(\begin{array}{cccc}
P_{11} & 0 & \ldots & 0 \\
& P_{22} & & \\
\vdots & & \ddots & \\
& & & \\
0 & & \ldots & P_{n n}
\end{array}\right)
$$

2.1 Ta

According to decomposition (2.1) we write

$$
T a=T_{1} a+L_{d} a .
$$

It is easy to see that $L_{d} a=\left(0, T_{2,1} a_{2}, \ldots, T_{n, n-1} a_{n}\right)^{\prime}$ (see LdV.f90). The multiplication (see TV.f90) $T_{1} a$ consists in $\frac{N * N *(N+1)}{2}$ operations.

$2.2 T P T^{\prime}$

According to decomposition (2.1) and (2.2) we write

$$
\begin{align*}
T P T^{\prime} & =\left(T_{1}+L_{d}\right) P\left(T_{1}^{\prime}+L_{d}^{\prime}\right) \tag{2.3}\\
& =T_{1} P T^{\prime}+T_{1} P L_{d}^{\prime}+L_{d} P T_{1}^{\prime}+L_{d} P L_{d}^{\prime} .
\end{align*}
$$

We observe that $L_{d} M$, where M is an arbitrary matrix, is equal to the matrix whose only non zero rows are those corresponding to the non zero elements of L_{d} (see LdM.f90).
We can use the symmetricitity of P and consider as a whole $T_{1} P L_{d}^{\prime}+L_{d} P T_{1}^{\prime}$. We first compute $X=T_{1} P$ (see TM.f90), we have

$$
\begin{aligned}
T_{1} S L_{d}^{\prime}+L_{d} S T_{1}^{\prime} & =X L_{d}+L_{d} X^{\prime} \\
& =L_{d} X^{\prime}+\left(L_{d} X^{\prime}\right)^{\prime}
\end{aligned}
$$

In this way we have replaced right multiplication by T^{\prime} and, instead, we use left multiplication by L_{d} (which we know it is very low computational demanding) and a matrix transpose.

The computation of $L_{d} S L_{d}^{\prime}$ is quite straightforward (see LdSLd.f90), since it ends out top be equal to the matrix whose elements are given by

$$
L_{d}(i, i-1) S(i-1, j-i) L_{d}(j, j-1),
$$

i.e. the only non zero terms are those corresponding to the non zeros elements of L_{d}.
To compute $T_{1} P T_{1}^{\prime}$, we propose two different approaches:
direct computation: we directly compute $T_{1} P T_{1}^{\prime}$ using properties of triangular and symmetric matrices (see TSTt.f90)
decomposition of symmetric matrices: if we may use multiple processors, we may think of computing $T_{1} P T_{1}^{\prime}$ by applying (2.2). We write

$$
\begin{align*}
T_{1} P T_{1}^{\prime} & =T_{1}\left(U+D+U^{\prime}\right) T_{1}^{\prime} \tag{2.4}\\
& =T_{1} U T_{1}^{\prime}+T_{1} D T_{1}^{\prime}+T_{1} U^{\prime} T_{1}^{\prime}
\end{align*}
$$

We observe that the diagonal elements of S are all non negative. We then define \sqrt{D} as the diagonal matrix whose elements are the square roots of the diagonal elements of S (which is D in (2.2)).
Let $Y_{U}=T_{1} U$ (see TU.f90) and $Y_{D}=T_{1} \sqrt{D}$ (see TD.f90).
Equation (2.4) becomes

$$
\begin{aligned}
T_{1} U T_{1}^{\prime}+T_{1} D T_{1}^{\prime}+T_{1} U^{\prime} T_{1}^{\prime} & =Y_{U} T_{1}^{\prime}+Y_{D} Y_{D}^{\prime}+T_{1} Y_{U} \\
& =T_{1} Y_{U}+\left(T_{1} Y_{U}\right)^{\prime}+Y_{D} Y_{D}^{\prime}
\end{aligned}
$$

Once again instead of right multiplication by a lower triangular matrix $\left(T_{1}^{\prime}\right)$, we need to compute matrix transposes.
Setting $X_{1}=L_{d} X^{\prime}=L_{d}\left(T_{1} P\right)^{\prime}$ (see LdM.f90), $X_{2}=T_{1} Y_{U}^{\prime}=T_{1}\left(T_{1} U\right)^{\prime}$ (see TM.f90) and $X_{3}=Y_{D}$, we have

$$
\begin{aligned}
T P T^{\prime} & =X_{1}+X_{1}^{\prime}+L_{d} P L_{d}^{\prime} \\
& +X_{2}+X_{2}^{\prime}+X_{3} X_{3}^{\prime}
\end{aligned}
$$

which can be also thought in terms of parallel routines (if multiple processors are available).

Chapter 3

Routines

In order to apply the proposed strategies, we have the following FORTRAN 90 routines:

- QT2Ld.f90: extracts the lower diagonal part L_{d} from an upper quasi-triangular matrix $Q T$
- QT2T.f90: extracts the upper triangular part T from an upper quasi-triangular matrix $Q T$
- S2D.f90: extracts the square diagonal part \sqrt{D} from a symmetric matrix S
- S2U.f90: extracts the over diagonal part U from a symmetric matrix S
- TV.f90: $T * V$ where T is upper triangular and V is a vector
- LdV.f90: $L_{d} * V$ where L_{d} is lower diagonal and V is a vector
- LdSLd.f90: $L_{d} * S * L_{d}^{\prime}$ where L_{d} is lower diagonal and S is symmetric
- LdM.f90: $L_{d} * M$ where L_{d} is lower diagonal and M is arbitrary
- TD.f90: $T * V$ where T is upper triangular and D is a diagonal
- TM.f90: $T * M$ where T is upper triangular and M is arbitrary
- TU.f90: $T * U$ where T is upper triangular and U is over diagonal
- TUt.f90: $T * U^{\prime}$ where T is upper triangular and U is over diagonal
- TT.f90: $T_{1} * T_{2}$ where both T_{1} and T_{2} are upper triangular matrices
- TSTt.f90: $T * S * T^{\prime}$ where T is upper triangular and S is a symmetric

Chapter 4

Sequence of routine's calls

Given an upper quasi-triangular matrix T and a symmetric matrix P, whose dimension is equal to n and a vector a, we do the following steps:

Ta:

1. $T_{1}=Q T 2 T(Q T, n)$ and $L_{d}=Q T 2 L_{d}(Q T, n)$;
2. $T a=L d V\left(L_{d}, a, n\right)+T V\left(T_{1}, a, n\right)$.
$T P T^{\prime}$:

Case 1:

1. $T_{1}=Q T 2 T(Q T, n)$ and $L_{d}=Q T 2 L_{d}(Q T, n)$;
2. $X=T M\left(T_{1}, S, n\right)$ and $X_{2}=\operatorname{LdSLd}\left(L_{d}, P, n\right)$;
3. $X_{1}=\operatorname{LdM}\left(L_{d}, X^{\prime}, n\right), X_{3}=\operatorname{TSTt}\left(T_{1}, P, n\right)$;
4. $T P T^{\prime}=X_{1}+X_{1}^{\prime}+X_{2}+X_{3}$

Case 2:

1. $T_{1}=Q T 2 T(Q T, n)$ and $L_{d}=Q T 2 L_{d}(Q T, n)$;
2. $U=S 2 U(P, n)$ and $\sqrt{D}=S 2 D(S, n)$;
3. $X=T M\left(T_{1}, S, n\right), Y_{U}=T U\left(T_{1}, U, n\right)$ and $Y_{D}=T D\left(T_{1}, D, n\right)$;
4. $X_{1}=\operatorname{LdM}\left(L_{d}, X^{\prime}, n\right), X_{2}=T M\left(T_{1}, Y_{U}, n\right), X_{3}=T M\left(Y_{D}, Y_{D}^{\prime}, n\right)$ and $X_{4}=$ $\operatorname{LdSLd}\left(L_{d}, P, n\right)$;
5. $T P T^{\prime}=X_{1}+X_{1}^{\prime}+X_{4}+X_{2}+X_{2}^{\prime}+X_{3}$.
