Quasi triangular matrices multiplication in Kalman filter estimation

Problem setting

We want to optimize the matrix multiplication used in the estimate of the Kalman filter.

In particular we want to speed up the computation of the following steps:

$$Ta_{t-1|t-1}$$
(1.1)
$$TP_{t-1|t-1}T'$$

where

T is upper quasi-triangular matrix;

P is symmetric (with diagonal non negative diagonal elements); *a* is a vector.

Strategy

The main idea is to replace right multiplication T' with transpose, where *T* is a lower quasi-triangular matrix. Given the property of the matrices *T* and *P* and since we need to compute TST' we propose the following strategy.

We first write (see QT2Ld.f90 and QT2T.f90)

$$T = T_1 + L_d \tag{2.1}$$

as the sum of a upper triangular matrix T_1 and a lower sub diagonal matrix

$$L_d = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ * & 0 & \dots & 0 & 0 \\ \vdots & * & \dots & 0 & 0 \\ & \ddots & * & 0 & 0 \\ 0 & 0 & \dots & * & 0 \end{pmatrix}$$

where only elements $L_d(i, i-1)$ may be different from zeros.

We also write the symmetric matrix (see S2U.f90 and S2D.f90)

$$P = U + D + U' \tag{2.2}$$

where

$$U = \begin{pmatrix} 0 & P_{12} & \dots & P_{1n} \\ 0 & \ddots & & & \\ \vdots & & & & \\ & & & P_{n-1n} \\ 0 & \dots & 0 & 0 \end{pmatrix}$$

and

$$D = \begin{pmatrix} P_{11} & 0 & \dots & 0 \\ & P_{22} & & & \\ \vdots & & \ddots & & \\ & 0 & & \dots & P_{nn} \end{pmatrix}$$

2.1 *Ta*

According to decomposition (2.1) we write

$$Ta = T_1 a + L_d a.$$

It is easy to see that $L_d a = (0, T_{2,1}a_2, \dots, T_{n,n-1}a_n)'$ (see LdV.f90). The multiplication (see TV.f90) $T_1 a$ consists in $\frac{N*N*(N+1)}{2}$ operations.

2.2 *TPT'*

According to decomposition (2.1) and (2.2) we write

$$TPT' = (T_1 + L_d)P(T'_1 + L'_d)$$

$$= T_1PT' + T_1PL'_d + L_dPT'_1 + L_dPL'_d.$$
(2.3)

We observe that $L_d M$, where M is an arbitrary matrix, is equal to the matrix whose only non zero rows are those corresponding to the non zero elements of L_d (see LdM.f90).

We can use the symmetricitity of *P* and consider as a whole $T_1PL'_d + L_dPT'_1$. We first compute $X = T_1P$ (see TM.f90), we have

$$T_1SL'_d + L_dST'_1 = XL_d + L_dX'$$
$$= L_dX' + (L_dX')'.$$

In this way we have replaced right multiplication by T' and, instead, we use left multiplication by L_d (which we know it is very low computational demanding) and a matrix transpose.

The computation of $L_dSL'_d$ is quite straightforward (see LdSLd.f90), since it ends out top be equal to the matrix whose elements are given by

$$L_d(i, i-1)S(i-1, j-i)L_d(j, j-1),$$

i.e. the only non zero terms are those corresponding to the non zeros elements of L_d .

To compute $T_1PT'_1$, we propose two different approaches:

- **direct computation:** we directly compute $T_1PT'_1$ using properties of triangular and symmetric matrices (see TSTt.f90)
- **decomposition of symmetric matrices:** if we may use multiple processors, we may think of computing $T_1PT'_1$ by applying (2.2). We write

$$T_{1}PT_{1}' = T_{1}(U + D + U')T_{1}'$$

$$= T_{1}UT_{1}' + T_{1}DT_{1}' + T_{1}U'T_{1}'.$$
(2.4)

We observe that the diagonal elements of *S* are all non negative. We then define \sqrt{D} as the diagonal matrix whose elements are the square roots of the diagonal elements of *S* (which is *D* in (2.2)).

Let $Y_U = T_1 U$ (see TU.f90) and $Y_D = T_1 \sqrt{D}$ (see TD.f90).

Equation (2.4) becomes

$$T_1UT_1' + T_1DT_1' + T_1U'T_1' = Y_UT_1' + Y_DY_D' + T_1Y_U$$

= $T_1Y_U + (T_1Y_U)' + Y_DY_D'.$

Once again instead of right multiplication by a lower triangular matrix (T'_1) , we need to compute matrix transposes.

Setting $X_1 = L_d X' = L_d (T_1 P)'$ (see LdM.f90), $X_2 = T_1 Y'_U = T_1 (T_1 U)'$ (see TM.f90) and $X_3 = Y_D$, we have

$$TPT' = X_1 + X_1' + L_d PL_d' + X_2 + X_2' + X_3 X_3',$$

which can be also thought in terms of parallel routines (if multiple processors are available).

Routines

In order to apply the proposed strategies, we have the following FORTRAN 90 routines:

- QT2Ld.f90: extracts the lower diagonal part L_d from an upper quasi-triangular matrix QT
- QT2T.f90: extracts the upper triangular part T from an upper quasi-triangular matrix QT
- S2D.f90: extracts the square diagonal part \sqrt{D} from a symmetric matrix S
- S2U.f90: extracts the over diagonal part U from a symmetric matrix S
- TV.f90: T * V where T is upper triangular and V is a vector
- LdV.f90: $L_d * V$ where L_d is lower diagonal and V is a vector
- LdSLd.f90: $L_d * S * L'_d$ where L_d is lower diagonal and S is symmetric
- LdM.f90: $L_d * M$ where L_d is lower diagonal and M is arbitrary
- TD.f90: T * V where T is upper triangular and D is a diagonal
- TM.f90: T * M where T is upper triangular and M is arbitrary
- TU.f90: T * U where T is upper triangular and U is over diagonal
- TUt.f90: T * U' where T is upper triangular and U is over diagonal
- TT.f90: $T_1 * T_2$ where both T_1 and T_2 are upper triangular matrices
- TSTt.f90: T * S * T' where T is upper triangular and S is a symmetric

Sequence of routine's calls

Given an upper quasi-triangular matrix T and a symmetric matrix P, whose dimension is equal to n and a vector a, we do the following steps:

Ta:

1.
$$T_1 = QT2T(QT, n)$$
 and $L_d = QT2L_d(QT, n)$;

2.
$$Ta = LdV(L_d, a, n) + TV(T_1, a, n)$$
.

TPT':

Case 1:

1.
$$T_1 = QT2T(QT, n)$$
 and $L_d = QT2L_d(QT, n)$;
2. $X = TM(T_1, S, n)$ and $X_2 = LdSLd(L_d, P, n)$;
3. $X_1 = LdM(L_d, X', n), X_3 = TSTt(T_1, P, n)$;
4. $TPT' = X_1 + X'_1 + X_2 + X_3$

Case 2:

- 1. $T_1 = QT2T(QT, n)$ and $L_d = QT2L_d(QT, n)$;
- 2. U = S2U(P, n) and $\sqrt{D} = S2D(S, n)$;
- 3. $X = TM(T_1, S, n), Y_U = TU(T_1, U, n)$ and $Y_D = TD(T_1, D, n)$;
- 4. $X_1 = LdM(L_d, X', n), X_2 = TM(T_1, Y_U, n), X_3 = TM(Y_D, Y'_D, n)$ and $X_4 = LdSLd(L_d, P, n);$
- 5. $TPT' = X_1 + X'_1 + X_4 + X_2 + X'_2 + X_3$.