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Abstract

This paper provides an introduction to the graphs displayed by Dynare in its
stoch_simul, rplot, estimation, shock_decomposition, and identification-commands.
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1 Graphs Produced by stoch_simul
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Figure 1: Orthogonalized shock to e_a - Impulse response functions (Impulse Response
Function (IRF)) generated by stoch_simul. The underlying shock can be seen from either
the figure title in Matlab or the file name. The x-axis displays the time horizon, while the
y-axis displays deviations from the deterministic steady state, either in absolute deviations
for linearized models or in percentage deviations for loglinearized models. The model used for
the present graph is only linearized. Thus, the impact response for y means that y decreases
by about 0.08 units. Predetermined variables like the capital stock in the present example
are displayed in Dynare’s end of period notation. Thus, k reacts on impact, because it is
the capital stock at the end of the period, which is chosen by today’s investment, but only
becomes productive tomorrow.
If there are correlated shocks, Dynare uses a Cholesky decomposition to orthogonalize the
shocks. The ordering in the Cholesky decomposition depends on the declaration order
of the exogenous variables in the var_exo-statement. For more information, see http:
//www.dynare.org/phpBB3/viewtopic.php?f=1&t=2574. In case you want to simulate two
simultaneous shocks, see http://www.dynare.org/phpBB3/viewtopic.php?f=1&t=2515
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Figure 2: Spectral density of y – Spectral density plot generated by stoch_simul if
options_.SpectralDensity.trigger = 1; has been set. The graphs are saved to the
graphs-subfolder. Graphs display the univariate spectral density of the respective variable
under consideration. The x-axis depicts the frequency, while the y-axis shows the power of
this time-series at the respective frequency.
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Figure 3: Simulated Trajectory – Plot of the simulated trajectory of endogenous variables
that can be generated by using the rplot-command after stoch_simul or simul. Graphs
display the simulated series over the simulation horizon. When used with the default option
options_.rplottype=0, the command prints all simulated series in one figure. The graphs
are saved in the graphs-subfolder.
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Figure 4: Simulated Trajectory – Plot of the simulated trajectory that can be generated
by using the rplot-command after stoch_simul or simul. Graphs display the simulated series
over the simulation horizon. When used with the option options_.rplottype=1 (top figure),
the command prints one figure for each variable to plot. With option options_.rplottype=2
(bottom figure), the command prints all series into one figure, but with different subplots for
each series. The graphs are saved in the graphs-subfolder.
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2 Graphs Produced by estimation
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Figure 5: Priors – Prior plot generated by the plot_priors-option of the estimation-
command. The x-axis displays part of the support of the prior distribution, while the
y-axis displays the corresponding density. Standard deviations of shocks are designated
by SE_, followed by the name of the shock, while observational errors are indicated by
SE_EOBS_, followed by the name of the observable variables. Correlation between shocks and
measurement errors are indicated by CC_ and CC_EOBS_ followed again by the names of the
shock or observables.
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Figure 6: Mode check plots – Mode check plot generated by the mode_check-option of
the estimation-command. This figure allows for checking whether the mode-computation
found the (local) mode. The x-axis of each panel displays an interval of parameter values
centered around the estimated mode (horizontal magenta line), while the y-axis displays the
corresponding value of the log-likelihood kernel shifted up or down by the prior value at the
posterior mode (green line) and of the posterior likelihood function (blue line). Differences
in the shape between the likelihood kernel and the posterior likelihood indicate the role
of the prior in influencing the curvature of the likelihood function. Ideally, the estimated
mode should be at the maximum of the posterior likelihood. Big red dots indicate parameter
values for which the model could not be solved due to e.g. violations of the Blanchard-Kahn
conditions (indeterminacy or no bounded solution). In the current plot, one such point
is obtained when the autocorrelation coefficient rho is set to 1. The labeling of standard
deviations and correlations is the same as in Figure 5.
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Figure 7: Monte Carlo Markov Chain (MCMC) univariate diagnostics (Brooks
and Gelman, 1998) – Univariate convergence diagnostics generated by the estimation-
command if mh_nblocks is larger than 1 and mh_replic larger than 1000. It is stored in
the Output-subfolder. The first column with the appended (Interval) shows the Brooks and
Gelman (1998, Section 3) convergence diagnostics for the 80% interval. The blue line shows
the 80% interval/quantile range based on the pooled draws from all sequences, while the
red line shows the mean interval range based on the draws of the individual sequences. The
second and third column with the appended (m2) and (m3) show an estimate of the same
statistics for the second and third central moments, i.e. the squared and cubed absolute
deviations from the pooled and the within-sample mean, respectively. If the chains have
converged, the two lines should stabilize horizontally and should be close to each other.
The depicted graphs are based on an increasing number of parameter draws. The step
size is ceil((NumberOfDraws-1000)/100). The first data point is always computed on a
window from draw 500 to draw 1000. The subsequent window ii ranges from from draw
(1000+ii*stepsize)/2 to draw (1000+ii*stepsize)/2. The labeling of standard deviations
and correlations is the same as in Figure 5.
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Figure 8: Multivariate convergence diagnostic – Multivariate convergence diagnostics
generated by the estimation-command if mh_nblocks is larger than 1 and mh_replic larger
than 1000. It is stored in the Output-subfolder. This diagnostics is the same as the univariate
one depicted in Figure 7, except for the statistics now being based on the range of the posterior
likelihood function instead of the individual parameters. Thus, the posterior kernel is used to
aggregate the parameters. Again, convergence is indicated by the two lines stabilizing and
being close to each other. The window size is the same as in the univariate case (see Figure 7
for a description).
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Figure 9: Priors and posteriors – Prior-posterior plot generated by the estimation-
command if mh_replic > 0. The x-axis displays part of the support of the prior distribution,
while the y-axis displays the corresponding density. The grey line shows the prior density
also shown in Figure 5, while the black line shows the density of the posterior distribution.
The green horizontal line indicates the posterior mode. If the posterior looks like the prior,
either your prior was a very accurate reflection of the information in the data or, more usually,
the parameter under consideration is only weakly identified and the data does not provide
much information to update the prior. The strength of identification can be checked using
the identification-command. The labeling of standard deviations and correlations is the
same as in Figure 5.
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Figure 10: Orthogonalized shock to e_a – Bayesian IRF plot generated by the
bayesian_irf-option of the estimation-command. It is stored in the Output-subfolder.
Generally, these IRFs are similar to the ones displayed in Figure 1 and use the same or-
thogonalization scheme. The main difference is that the stoch_simul-IRFs are computed
at the calibrated parameter combination, while the Bayesian IRFs are the mean impulse
responses (not to be confused with the IRFs at the mean). The gray shaded areas provide
highest posterior density intervals (Highest Posterior Density Interval (HPDI)). If you want
to compute classical IRFs after estimation, use stoch_simul after estimation as the latter
will set the parameters to the posterior mode/mean, depending on whether you use maximum
likelihood or Bayesian estimation. More information can be found in Adjemian, Bastani,
Juillard, Karamé, Mihoubi, Perendia, Pfeifer, Ratto, and Villemot (2011)
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Figure 11: Smoothed variables – Smoothed variables plot generated by the
filtered_vars-option of the estimation-command. It is stored in the Output-subfolder.
The black line depicts the mean estimate of the smoothed variables (“best guess for the
endogenous variables given all observations”), derived from the Kalman smoother. The green
lines represent the deciles of the smoother distribution.
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Figure 12: Smoothed Shocks – Smoothed Shocks plot generated by the estimation-
command when either maximum likelihood estimation (Maximum Likelihood (ML)) is used or
Bayesian estimation without the smoother-option. It is stored in the main folder. The black
line depicts the estimate of the smoothed structural shocks (“best guess for the structural
shocks given all observations”), derived from the Kalman smoother at the posterior mode
(ML) or posterior mean (Bayesian estimation).
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Figure 13: Historical and smoothed variables – Historical and smoothed variables plot
generated by the estimation-command when either maximum likelihood estimation (ML) is
used or Bayesian estimation without the smoother-option. It is stored in the main folder. The
dotted black line depicts the actually observed data, while the red line depicts the estimate
of the smoothed variable (“best guess for the observed variable given all observations”),
derived from the Kalman smoother at the posterior mode (ML) or posterior mean (Bayesian
estimation). In case of no measurement error, both series are identical. (@ Michel: what is
the point of printing them then?)

19



50 100 150 200
−0.1

−0.05

0

0.05

0.1
e_a

50 100 150 200
−0.02

−0.01

0

0.01

0.02
e_m

Figure 14: Smoothed shocks – Smoothed shocks plot generated by the filtered_vars-
option of the estimation-command. It is stored in the Output-subfolder. The black line
depicts the mean estimate of the smoothed structural shocks (“best guess for the structural
shocks given all observations”), derived from the Kalman smoother. The green lines represent
the deciles of the smoother distribution.
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Figure 15: Updated Variables – Updated variables plot generated by the filtered_vars-
option of the estimation-command. It is stored in the Output-subfolder. The black line
depicts the mean estimate of the filtered endogenous variables (“best guess for the endogenous
variables at time t given information up to the current observations t”), derived from the
Kalman filter. The green lines represent the deciles of the smoother distribution.
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Figure 16: One step ahead forecast (filtered variables) – One step ahead forecast plot
generated by the filtered_vars-option of the estimation-command. It is stored in the
Output-subfolder. The black line depicts the mean estimate of the one step ahead forecast
of the endogenous variables (“best guess for the endogenous variables at time t + 1 given
information up to the current observations t”), derived from the Kalman filter. The green
lines represent the deciles of the one step ahead forecast distribution.
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Figure 17: Forecasted variables (mean) – Mean forecast plot generated by the forecast-
option of the estimation-command. It is stored in the Output-subfolder. The black line
depicts the mean forecasts for the endogenous variables, starting at the last observation of
the sample and going as many steps into the future as specified in the forecast-option. The
green lines again depict the mean forecast deciles. The mean forecasts only take the parameter
uncertainty into account, but omit the uncertainty about future shocks. Future shocks are
averaged out/set to 0.
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Figure 18: Forecasted variables (point) – Point forecast plot generated by the forecast-
option of the estimation-command. It is stored in the Output-subfolder. The black line
depicts the point forecasts for the endogenous variables, starting at the last observation of
the sample and going as many steps into the future as specified in the forecast-option.
The green lines again depict the point forecast deciles. In contrast to the mean forecasts,
the points forecast not only take the parameter uncertainty into account, but also take into
consideration the uncertainty about future shocks.
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Figure 19: Forecasts – Forecast plot generated by the forecast-option of the estimation-
command when used for ML-estimation. It is stored in the graphs-subfolder. The middle
lines depict the point forecasts for the endogenous variables, starting at the last observation
of the sample and going as many steps into the future as specified in the forecast-option.
This point forecast is obtained at the posterior mode (ML). The blue lines represent classical
confidence intervals with coverage specified by conf_sig. They are derived from the forecast
error variance of the state space representation. The default coverage is 60% (see # 338).

25



200 400 600 800 1000 1200 1400 1600 1800 2000

0.32

0.34

0.36

0.38

0.4

0.42

0.44

 

 
MCMC draw
200 period moving average

Figure 20: Trace plot for parameter alp (block number 2) – Trace plot generated by
the trace_plot-command after estimation. It is stored in the graphs-subfolder. The gray
line shows the MC iterations encountered during the MC chain indicated in the figure title
for the indicated parameter. The black line depicts the N-period moving average (default:
N=200). The current plot, showing the deep parameter alp, was created using the command
trace_plot(options_,M_,estim_params_,’DeepParameter’,2,’alp’). The first three ar-
guments are mandatory and always the same. The fourth input argument designates the type
of parameter to be plotted. It can take the values

• ’DeepParameter’ for a deep structural parameter defined in the parameters-command

• ’StructuralShock’ for the standard deviation or correlation of structural shocks (defined
in Dynare’s estimated_params-block using the stderr or corr-commands on exogenous
variables)

• ’MeasurementError’ for the standard deviation or correlation of measurement errors
(defined in Dynare’s estimated_params-block using the stderr or corr-commands on
endogenous variables)

The fifth input argument takes an integer specifying the number of the Markov Chain for which
you want to plot the draws. The sixth input argument provides the name of the parameter to be
plotted/the name of the exogenous or endogenous variable for which to plot the standard devi-
ation of the structural shock or measurement error. In case of a correlation that should be plot-
ted, you have to specify the name of the second affected endogenous or exogenous variable as
the seventh input argument. For example, to plot the correlation between the shocks e_m and
e_a, use trace_plot(options_,M_,estim_params_,’StructuralShock’,2,’e_m’,’e_a’)
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Figure 21: Autocorrelogram for correlation between structural shocks
e_m and e_a (block number 2) – Autocorrelogram plot generated by the
mh_autocorrelation_function-command after estimation. It is stored in the graphs-
subfolder. The black bars indicate the n-th order autocorrelation of the parameter in the
specified Markov Chain shown in the figure title. The horizontal axis shows the lag order n,
while the vertical axis depicts the corresponding autocorrelation at lag n. At 0, the correlation
is always 1. Ideally, we would like the draws from the posterior to be iid. The higher the
autocorrelation the more inefficient the MCMC is due to the correlation making one additional
draw from the MCMC less informative compared to the already present draws. If the autocor-
relation is very high, you will need a lot of draws in your MCMC. The syntax for plotting is the
same as for the trace_plot-command in Figure 20. The present graph has been created using
mh_autocorrelation_function(options_,M_,estim_params_,’StructuralShock’,2,’e_m’,’e_a’)
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3 Graphs Produced by dsge_var
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Figure 22: Orthogonalized shock to e_ms – Bayesian IRF plot generated by the
bayesian_irf-option of the estimation-command if the dsge_var-option is specified. It is
stored in the Output-subfolder. The thick black dashed line in the middle is the median IRF
of the Dynamics Stochastic General Equilbrium (DSGE) Vector Autoregression (VAR). The
thin black dashed lines are the first and ninth posterior deciles of the DSGE-VAR’s IRFs.
The thick solid black line is the median posterior IRF of the DSGE model, while the shaded
area covers the space between the first and ninth posterior deciles of the DSGE’s IRFs (i.e.
basically the content of Figure 10).
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4 Graphs Produced by forecast

The forecast-command makes use of the same functions as the forecasts after maximum
likelihood estimation. See Figure for a description.
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5 Graphs Produced by shock_decomposition
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Figure 23: Shock decomposition – Shock decomposition plot generated by the
shock_decomposition-command. It is stored in the main folder. The black line depicts the
deviation of the smoothed value of the corresponding endogenous variable from its steady
state at the specified parameter_set. Note that this differs from Figure 11, where the
steady state was added. By default, the parameter_set is the posterior_mean if Bayesian
estimation has been used and the posterior_mode otherwise. The colored bars correspond
to the contribution of the the respective smoothed shocks to the deviation of the smoothed
endogenous variable from its steady state, i.e. our “best guess” of which shocks lead to our
“best guess” for our unobserved variables. “Initial values” in the graphs refers to the part of
the deviations from steady state not explained by the smoothed shocks, but rather by the
unknown initial value of the state variables. This influence of the starting values usually dies
out relatively quickly.
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6 Graphs Produced by identification
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Figure 24: prior_mean - Identification using info from observables – Identification
strength-plot generated by the identification-command. It is stored in the identification
subfolder. Upper Panel: the bar charts depict the identification strength of the parameters
based on the Fischer information matrix normalized by either the parameter at the prior
mean (blue bars) or by the standard deviation at the prior mean (red bars) (see formulas (11)
and (??) in Ratto (2011)). The weighting with the prior standard deviation uses the prior
uncertainty for weighting and is particularly useful for cases where the prior mean is 0. In
this case the weighting with the prior mean would falsely signal an identification strength
of 0. The Fisher information matrix is either computed analytically (Iskrev, 2011) or based
on simulations. Which version has been used is indicated in the figure title. Intuitively, the
bars represent the normalized curvature of the log likelihood function at the prior mean in
the direction of the parameter. If the strength is 0 as is the case for theta in the rightmost
diagram, the parameter is not identified as the likelihood function is flat in this direction. In
contrast, the larger the absolute value of the bars, the stronger is the identification. Note
that the graphs generally use a log-scale except for parameters that are unidentified, which
are shown with a bar length of exactly 0, i.e. no bar at all.
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Figure 25: prior_mean - Identification using info from observables – Identification
strength-plot generated by the identification-command. It is stored in the identification
subfolder. Lower Panel: This panel further decomposes the effect shown in the upper panel.
A weak identification can be due to either other parameters linearly compensating/replacing
the effect of a parameter (i.e. parameters having exactly the same effect on the likelihood)
or the fact that the likelihood does not change at all with the respective parameter. This
latter effect is called sensitivity (computed according to formula (12) in Ratto (2011)) and is
plotted in the bottom panel. Again, weighting can take place either with the prior mean (blue
bars) or the prior standard deviation (red bars). The bottom panel shows that the sensitivity
of theta is 0. Thus, theta is not identified at the local mean, because it does not affect the
likelihood and hence the model moments.
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Figure 26: prior_mean - Sensitivity plot – Sensitivity-plot generated by the
identification-command. It is stored in the identification subfolder. It shows an ag-
gregate measure of how changes in the elements of the parameter vector θ impact on the
model moments. The “impact” is measured locally using the Jacobian, i.e. the local deriva-
tives. The problem is that derivatives are not scale-invariant and thus not easily comparable.
Hence, a normalization of the derivative of the jth moment of the moment vector, mj, with
respect to the parameter entry i, ∂mj/∂θi is performed. This is done by multiplying with the
ratio of standard deviations std(θi)/std(mj) (square root of formula (16) in Ratto (2011)).
This normalization of the change in the parameter i, ∂θi, by its variance, std(mj), accounts
for different parameter uncertainty by ascribing ceteris paribus more importance to more
variable parameters, because they will be responsible for higher changes in the moments
(thereby effectively normalizing across parameters i). At the same time, the normalization of
the change in the moment ∂mj with its standard deviation, std(mj), allows for comparing the
impact of parameter i on differently volatile moments (effectively normalizing across moments
j). Thus, when taking the norm (i.e. length) of the columns of the standardized Jacobian, one
ends up with a single aggregate sensitivity measure over all moments j for each parameter i.
Dynare plots three different measures of sensitivity. The bars shown in the figure depict
the norm of the columns of three different standardized Jacobian matrices for the respective
parameter shown on the x-axis. The respective Jacobian matrices refer to i) the moments
matrix (∂mT/∂θ

′), indicting how well a parameter can be identified due the strength of its
impact on the observed moments, ii) the model solution matrices (∂τ/∂θ′), indicating how
well a parameter could in principle be identified if all state variables were observed, and
iii) the Linear Rational Expectations (Linear Rational Expectation (LRE)) model (∂γ/∂θ′),
indicating trivial cases of non-identifiability due to e.g. some parameters always showing up
as a product only in the model equations. (@MARCO: is it correct that e.g. for the LRE
case, the Jacobian is of γ instead of mT? The manual is not explicit here.) If the moment
matrix indicates non-identifiability and the model solution matrix indicates identifiability, it
means that your observables in the var_obs-command are not sufficient.
As the sensitivity is analyzed at the prior mean, this is a point estimate which uses analytic
derivatives to compute the variance of the moments m.
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Figure 27: prior_mean - Collinearity pattern with 2 parameter(s) – Collinearity
pattern-plot generated by the identification-command. It is stored in the identification
subfolder. The plot shows which linear combination of parameters shown in the columns best
replicates/replaces the effect of the parameter depicted in the row on the moments of the
observables. Higher values imply the relative redundancy and thus weak or un-identifiability
of the parameter under consideration. This analysis is conducted via brute force. For each
single parameter a set of regressions is run of the column of the Jacobian corresponding
to the parameter in the row on all possible combinations of x other Jacobian columns
(x ∈ {1, . . . , max_dim_cova_group}). The aim is finding the column (and thus parameter)
combination with the highest R2. The resulting collinearity pattern between the parameter in
the row and the set of parameters in the columns is then shown in the figure. Dynare generates
plots for each set size of columns and thus parameters starting at 1 up to max_dim_cova_group.
The depicted plot shows an example for a set size of two. The darker red the squares are, the
more critical is the collinearity between parameters. For example, the first row signifies that
there is a strong correlation between the effect of e_a on the model moments and the effect
of alp and psi.
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Figure 28: prior_mean - Identification patterns (Information matrix): SMALL-
EST SV – Identification pattern-plot generated by the identification-command. It is
stored in the identification subfolder. Following Andrle (2010), the parameter groups with the
strongest and weakest identification can be identified from the singular value decomposition
(Singular Value Decomposition (SVD)) of the Fischer information matrix. This graph shows
the smallest singular values (Singular Value (SV)) and the associated eigenvectors of parame-
ters. The parameter combinations associated with the smallest singular values are closest to
being perfectly collinear and thus redundant. A singular value of 0, as is the case for theta,
implies that the parameter is completely unidentified as it is responsible for the information
matrix being rank deficient due to the parameter having no effect at all on the likelihood.
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Figure 29: prior_mean - Identification patterns (Information matrix): HIGHEST
SV –Identification pattern-plot generated by the identification-command. It is stored in
the identification subfolder. This graph shows the largest singular values and the associated
eigenvectors of parameters. It has the same interpretation as the graph for the smallest
singular values, Figure 28, except for now depicting the parameters being most uncorrelated
and thus best identified.
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Figure 30: MC sensitivities – Collinearity pattern-plot generated by the identification-
command. It is stored in the identification subfolder. It shows an aggregate measure of
how changes in the elements of the parameter vector θ impact on the model moments. The
interpretation of the graphs is the same as for the prior mean sensitivities depicted in Figure
26, except for the measure now being not a point estimate but being averaged over the
Monte Carlo (Monte Carlo (MC)) sample of the parameters θ, thus providing a description of
sensitivity over the whole parameter space.
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Figure 31: MC condition number – Condition number-plot generated by the
identification-command. Requires the advanced and prior_mc-options. It is stored
in the identification subfolder. It depicts the condition numbers of the Jacobians of the model
moments (∂mT/∂θ

′, first plot), the model solution matrices (∂τ/∂θ′, second plot), and the
LRE model (∂γ/∂θ′, third plot) encountered during the MC simulations. A large condition
number signals near-singularity of the respective Jacobian and thus weak identifiability. Hence,
the plot provides an overview about the occurrence of identification problems over the whole
parameter range as encountered during MC simulations.
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Figure 32: MC condition number – Condition number-plot generated by the
identification-command. Requires the advanced and prior_mc-options. It is stored
in the identification subfolder. This plot uses the condition number of the Jacobian to trace
out which parameters are only weakly identified and thus responsible for the Jacobian being
close to singular. To do so, the parameters encountered during MC are split into two samples,
depending on whether they occurred in a draw with a condition number above the median or
not. Testing whether the parameter distributions in both samples significantly differ, provides
an indication whether the parameter under consideration is the source of the Jacobian being
close to singular.
The dotted line represents the cumulative distribution of parameter values associated with
condition numbers in the bottom half, while the solid line depicts the cumulative distribution
associated with condition numbers in the upper half. The p-value above each subplot indicates
the probability of both distributions being equal according to a Smirnov test (see Ratto (2008)
for details about this procedure and its foundation in Monte Carlo Filtering). Generally, only
parameters with p-value below 0.1 are plotted in Dynare.
Dynare generates three plots corresponding to the condition numbers of the Jacobians of the
model moments (∂mT/∂θ

′, first plot), the model solution matrices (∂τ/∂θ′, second plot), and
the LRE model (∂γ/∂θ′, third plot) encountered during the MC simulations. These figures
are only saved to the disk, but not displayed after the run of identification.
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Figure 33: MC Sample - MC identification patterns (moments): SMALLEST
SV – Identification pattern-plot generated by the identification-command. Requires
the advanced and prior_mc-options. It is stored in the identification subfolder. It shows
the distribution of the parameter vectors associated with the smallest singular value of the
Jacobian (see Figure 28 for a description for the case of the information matrix) during the
MC runs. Note that in contrast to Figure 28 the SVD applies to the Jacobian of the moments
m with respect to the parameters θ, not the Fischer information matrix. This also explains
the large differences in the scale of the singular values.
The blue bars depict the mean value, while the red starred lines represent the 90% quantiles. If
the quantiles are narrow or one quantile is close to the mean, it suggests that the identification
pattern is similar over the whole parameter space. This can be clearly seen for theta, which
is unidentified over the whole sample. Similarly, for the second smallest singular value, the
mean of rho is identical to the upper 90% bound, while the other means are close to the
lower bound. This suggests that psi is weakly identified over the whole parameter space and
that the weak identification is not due to collinearity with other parameters. This evidence is
consistent with second panel of Figure 28.
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Figure 34: MC Sample - MC identification patterns (moments): HIGHEST SV
– Identification pattern-plot generated by the identification-command. Requires the
advanced and prior_mc-options. It is stored in the identification subfolder. It shows the
distribution of the parameter vectors associated with the largest singular value of the Jacobian
of the moments (see Figures 29 and 33) during the MC runs. This figure is similar to Figure
33, except for showing the parameter combinations with the strongest identification.
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7 Graphs Produced by dynare_sensitivity
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Figure 35: Prior StabMap: Parameter driving non-existence of unique stable solu-
tion (Unacceptable) – Prior stability mapping plot generated by the dynare_sensitivity-
command. This figure analyzes which parameters are responsible for not finding a unique
and stable solution to the model (i.e. where the Blanchard-Kahn conditions are not satisfied,
or the steady state could be computed, or NaN or Inf appear in the derivatives or model
solution). To do so, the parameters encountered during MC draws from the prior distribution
are split into two samples, depending on whether they occurred in a draw where a unique and
stable solution could be found or not. Testing whether the parameter distributions in both
samples significantly differ, provides an indication whether the parameter under consideration
is the source of the model solution not existing.
The dotted line represents the cumulative distribution of parameter values associated with a
unique and stable solution, while the solid line depicts the cumulative distribution associated
with a failure to compute a unique stable solution. The p-value above each subplot indicates
the probability of both distributions being equal according to a Smirnov test (see Ratto (2008)
for details about this procedure and its foundation in Monte Carlo Filtering). Generally, only
parameters with p-value below 0.1 are plotted in Dynare.
In the present example, both the discount factor beta, if it becomes larger than 1, and the
autocorrelation parameter rho, if its absolute value is bigger than 1, drive the non-existence
of a solution. The subsequent graphs show that beta>1 leads to the non-existence of a steady
state, while |rho|>1 leads to a violation of the BK-condition.
The plot is also available for the posterior instead of the prior draws. It is stored in the gsa
subfolder.
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Figure 36: Prior StabMap: Parameter driving explosiveness of solution – Prior
stability mapping plot generated by stability mapping of the dynare_sensitivity-command.
This analyzes which parameters are responsible for finding an explosive solution to the model,
i.e. where the Blanchard-Kahn conditions are violated due to the existence of more eigenvalues
outside of the unit circle than forward looking variables. To do so, the parameters encountered
during MC draws from the prior distribution are split into two samples, depending on whether
they occurred in a draw where an explosive solution was found or not. Testing whether the
parameter distributions in both samples significantly differ, provides an indication whether
the parameter under consideration is the source of the model solution exploding.
The dotted line represents the cumulative distribution of parameter values associated with a
unique and stable solution, while the solid line depicts the cumulative distribution associated
with an explosive solution. The p-value above each subplot indicates the probability of both
distributions being equal according to a Smirnov test (see Ratto (2008) for details about this
procedure and its foundation in Monte Carlo Filtering). Generally, only parameters with
p-value below 0.1 are plotted in Dynare.
The plot is also available for the posterior instead of the prior draws. It is stored in the gsa
subfolder.
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Figure 37: Prior StabMap: Parameter driving inability to find solution – Prior
stability mapping plot generated by stability mapping of the dynare_sensitivity-command.
This analyzes which parameters are responsible for Dynare being unable to compute a solution
to the model. Reasons are for example the inability to compute a steady state or the
appearance of NaN or Inf in the derivatives or model solution (violations of the Blanchard-
Kahn conditions are not counted). To do so, the parameters encountered during MC draws
from the prior distribution are split into two samples, depending on whether they occurred in a
draw where a solution could be computed or not. Testing whether the parameter distributions
in both samples significantly differ, provides an indication whether the parameter under
consideration is the source of the model solution exploding.
The dotted line represents the cumulative distribution of parameter values where a solution
could be computed, while the solid line depicts the cumulative distribution associated with
the inability to compute a solution. The p-value above each subplot indicates the probability
of both distributions being equal according to a Smirnov test (see Ratto (2008) for details
about this procedure and its foundation in Monte Carlo Filtering). Generally, only parameters
with p-value below 0.1 are plotted in Dynare.
In the present example, if the discount factor beta is larger than 1 no steady state can be
computed, thus driving the inability to compute a solution.
The plot is also available for the posterior instead of the prior draws. It is stored in the gsa
subfolder.
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TBA: Stab_map_2-Graphs @Marco: Do you have an easy example that generates those?
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Figure 38: Reduced Form Mapping - Reduced form mapping plot generated by the
redform-option of the dynare_sensitivity-command. (@Marco: What does redform do?
Interpretation of the graph?) Graphs of this type are created for all combinations of specified
endogenous variables with exogenous and lagged endogenous variables. The graphs are stored
in the gsa\reform_stab subfolder in a folder designating the name of the variable combination.
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Figure 39: Reduced Form Mapping (Threshold) - Reduced form mapping plot gener-
ated by the redform-option of the dynare_sensitivity-command. (@Marco: What does
redform do? Interpretation of the graph?) Graphs of this type are created for all combinations
of specified endogenous variables with exogenous and lagged endogenous variables, provided
any p-value is above the significance threshold. The graphs are stored in the gsa\reform_stab
subfolder in a folder designating the name of the variable combination.
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Figure 40: RMSE Prior: Log Prior – Root mean squared error (Root Mean Squared Error
(RMSE)) plot generated by RMSE-option of the dynare_sensitivity-command. (@Marco:
What does RMSE do? Interpretation of the graph?), Similar graphs exist for the Posterior
and MC instead of the prior distribution. It is stored in the gsa subfolder.
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Figure 41: RMSE Prior: Log Likelihood – RMSE plot generated by RMSE-option of
the dynare_sensitivity-command. (@Marco: What does RMSE do? Interpretation of the
graph?), Similar graphs exist for the Posterior and MC instead of the prior distribution. It is
stored in the gsa subfolder.
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Figure 42: RMSE Prior: Log Posterior – RMSE plot generated by RMSE-option of the
dynare_sensitivity-command. (@Marco: What does RMSE do? Interpretation of the
graph?), Similar graphs exist for the Posterior and MC instead of the prior distribution. It is
stored in the gsa subfolder.
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8 Graphs Produced by bvar_forecast
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Figure 43: BVAR forecasts (nlags=8) – BVAR forecasts plot generated by the
bvar_forecast-command. It is stored in the graphs-subfolder. The blue line in the middle
is the median forecast of the Bayesian Vector Autoregression (BVAR) in the absence of
shocks, i.e. given only parameter uncertainty. The area between the green lines covers the
options_.conf_sig percent HPDI interval (default: 60%) of the forecasts given only parame-
ter uncertainty. The area between the red lines covers the options_.conf_sig percent HPDI
interval (default: 60%) of the forecasts given both parameter uncertainty and uncertainty
about future shock realization.
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9 Graphs Produced by forecast

The graphs generated by the forecast-command are the same as for the forecast-option of
the estimation command with Maximum Likelihood-estimation shown in Figure 4.
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10 Graphs Produced by conditional_forecast
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Figure 44: Conditional forecast (Posterior Mode): gp_obs – Conditional forecast
plot generated by the conditional_forecast-command. It is stored in the graphs-subfolder.
The solid black line is the mean conditional forecast. The grey area around the black solid line
covers the options_.conf_sig percent confidence interval (default: 80%), computed as the
corresponding percentiles of the forecasts. The dashed black line is the mean unconditional
forecast. The area between the thin black dashed lines covers the options_.conf_sig
percent confidence interval (default: 80%) of the unconditional forecasts, computed as the
corresponding percentiles of the forecasts.
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11 Graphs Produced by the Markov Switching VAR
Codes
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Figure 45: MS-Probabilities, Chain 1 – Markov Switching (MS) probabilities
plot generated by the ms_compute_probabilities-command. It is stored in the
Output/Probabilities-subfolder. The x-axis shows the number of time periods and the
y-axis the probabilities of the corresponding regimes. The title shows the number of the
corresponding Markov Chain (with the total number set by the chain-option) for which
the probabilities are displayed. By default, the probabilities are smoothed probabilities,
i.e. using information up to time T . Using the filtered_probabilities-option of the
ms_compute_probabilities, filtered probabilities using only information up to time t can
be requested.
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Figure 46: Impulse Response Ergodic – Impulse response function plot generated by
the ms_irf-command. It is stored in the Output/IRF-subfolder. The x-axis shows the number
of time periods and the y-axis the deviation from the unconditional mean. The middle line
shows the median IRF, while the upper and lower blue line depict the percentiles of the IRF
distribution. They can be set using the error_band_percentiles-command and are 16%
and 84% percentiles by default.
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Figure 47: Forecast – Forecast plot generated by the ms_forecast-command. It is stored
in the Output/Forecast-subfolder. The x-axis shows the number of time periods and the
y-axis the forecasted deviation from the unconditional mean. The thick blue line is the mean
of median forecast, with the two thin blue lines indicating the upper and lower percentiles of
the forecast distribution. The percentiles are set in options_.ms.percentiles and are 16%
and 84% by default. The panel title shows the name of the respective variable.
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Figure 48: Variance Decomposition Ergodic – Forecast Error Variance Decompo-
sition plot generated by the ms_variance_decomposition-command. It is stored in the
Output/Variance_Decomposition-subfolder. The x-axis shows the forecast horizon and the
stacked colored columns the contribution of the corresponding shock to the overall forecast
error variance at the respective horizon. The title shows the name of the variable for which
the forecast error variance decomposition is performed.
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12 Error Messages

POSTERIOR KERNEL OPTIMIZATION PROBLEM! (minus) the hessian matrix at the
“mode” is not positive definite! => posterior variance of the estimated parameters are not
positive. You should try to change the initial values of the parameters...

ERROR: final.mod:201.1-3: syntax error, unexpected NAME
The reason usually is that a semicolon is missing in the previous line, but people only look

in the current line. If the error starts at 1, we might want to change the error message to
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