
KALMAN FILTERING AND SMOOTHING IN DYNARE

Introduction

“Filtering and Smoothing of State Vector for Diffuse State Space Mod-
els”, S.J. Koopman and J. Durbin (2003, in Journal of Time Series Analysis, vol.
24(1), pp. 85-98).

“Fast Filtering and Smoothing for Multivariate State Space Models”,
S.J. Koopman and J. Durbin (2000, in Journal of Time Series Analysis, vol. 21(3),
pp. 282-296).

The State-Space Model1:

yt = Zαt + εt

αt+1 = Tαt + Rηt

with:

α1 = a + Aδ + R0η0

m× q matrix A and m× (m− q) matrix R0 are selection matrices (their columns
constitue all the columns of the m × m identity matrix) so that A′R0 = 0 and
A′α1 = δ. We assume that the vector δ is distributed as a N (0, κIq) for a given
κ > 0. So that the expectation of α1 is a and its variance is P , with

P = κP∞ + P?

P∞ = AA′

P? = R0Q0R
′
0

P∞ is a m ×m diagonal matrix with q ones and m − q zeros. and where: yt is a
pp×1 vector, αt is a mm×1 vector, εt is a pp×1 multivariate random variable (iid
N (0,H)), ηt is a rr× 1 multivariate random variable (iid N (0, Q)), a1 is a mm× 1
vector, Zt is a pp×mm matrix, T is a mm×mm matrix, H is a pp × pp matrix,
R is a mm× rr matrix, Q is a rr × rr matrix and P1 is a mm×mm matrix.

1Note that in Dynare, matrices T , Z, R, H and Q are assumed to be time invariant.
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1. Filtering

The filtering equations are given by:

vt = yt − Zat

Ft = ZPtZ
′ + H

Kt = PtZ
′F−1

t

at+1 = T (at + Ktvt)

Pt+1 = T (Pt − PtZ
′K ′)T ′ + RQR′

(1.1)

{Ft} and {vt} are used to evaluate the likelihood. A potentially faster algorithm
(unfortunately not with matlab) is to consider a univariate approach to the multi-
variate Kalman filter (the covariance matrix associated to the measurement errors
has to be diagonal: H = diag(σ2

1 , . . . , σ2
pp)). Let Zi be line i of the selection matrix

Z. The univariate algorithm is as follows :

vt,i = yt,i − Zia
(i)
t
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(1.2)

when F
(i)
t is equal to zero we simply have a

(i+1)
t = a

(i)
t and P

(i+1)
t = P

(i)
t . The

log-likelihood is evaluated as follows:

(1.3) LT = const− 1
2

pp∑

i=1

n∑
t=1

log F
(i)
t + v2

t,i/F
(i)
t

The diffuse filtering equations are given by:

vt = yt − Zat

F∞,t = ZP∞,tZ
′ + H

K∞,t = P∞,tZ
′F−1
∞,t

F∗,t = ZP∗,tZ ′ + H

K∗,t = (P∗,tZ ′ −K∞,tF∗,t) F−1
∞,t

P∗,t+1 = T (P∗,t − P∗,tZ ′K ′
∞,t − P∞,tZ

′K ′
∗,t)T

′ + RQR′

P∞,t+1 = T (P∞,t − P∞,tZ
′K ′
∞,t)T

′

at+1 = T (at + K∞,tvt)

(1.4)

When the condition rank(P∞,t+1) = 0 is satisfied we set d = t and go back to
the standard Kalman filtering equations. Here F∞,t is assumed to be a full rank
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matrix. If this is not the case we switch to another algorithm. If F∞,t = 0:
vt = yt − Zat

F∗,t = ZP∗,tZ ′ + H

K∗,t = P∗,tZ ′F−1
∞,t

P∗,t+1 = T (P∗,t − P∗,tZ ′K ′
∗,t)T

′ + RQR′

P∞,t+1 = TP∞,tT
′

at+1 = T (at + K∗,tvt)

Lt = T (I −KtZ)

(1.5)

otherwise, we consider a diffuse version of the univariate approach described above.

2. Smoothing

The smoothing equations are given by:

rt−1 = Z ′F−1
t vt + L′trt

α̂t = at + Ptrt−1

η̂t = QRrt

ε̂t = H
(
F−1

t vt −K ′
trt

)
(2.1)

initializing with rn = 0 and with Lt = T −KtZ. The diffuse smoothing equations
are given by :

r
(0)
t−1 = L∞,tr

(0)
t

r
(1)
t−1 = Z ′F−1

∞,tvt −K ′
∗,tr

(0)
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(1)
t
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(0)
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(1)
t−1

η̂t = QRr
(0)
t

ε̂t = −HK ′
∞,tr

(0)
t

(2.2)

for t = d, d − 1, ..., 1, where d is such that P∞,d+1 = 0. This backward recurrence
is initialized with r

(0)
d = rd, obtained from the non diffuse Kalman smoother, and

r
(1)
d = 0. L∞,t = T −K∞,tZ.

A univariate smoothing algorithm has to be coded... In the smoothing part the
matrix Ft (or F∞,t) is assumed to be full rank...


