
DYNARE MANUAL

Version 3.0
Michel Juillard

DYNARE MANUAL: Version 3.0
Michel Juillard
Copyright © 1996, 2004 Michel Juillard

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved
on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire
resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions.

Table of Contents
Preface . iv
1. Introduction . 1
1. Software requirements . 2
2. Installation . 3
2.1. Installing the Matlab version . 3
2.2. Installing the Scilab version . 3
2.3. Installing the Gauss version . 4
2. Commands . 5
1. Executing Dynare . 6
2. General declarations . 8
3. Model declaration . 13
4. Initial and terminal conditions . 15
5. Shocks on exogenous variables . 19
6. Solving and simulating . 23
7. Estimation . 30
8. Displaying and saving results . 39
3. Examples . 43
Bibliography . 44
Index . 45

iii

Preface
Dynare is a pre-processor and a collection of Matlab, Scilab or Gauss routines which solve, simulate and estimate
non-linear models with forward looking variables. It is the result of research carried at CEPREMAP by several people
(see Laffargue, 1990, Boucekkine, 1995, and Juillard, 1996, Collard and Juillard 2001a and 2001b).

When the framework is deterministic, Dynare can be used for models with the assumption of perfect foresight. Typi-
cally, the system is supposed to be in a state of equilibrium before a period “1” when the news of a contemporaneous
or of a future shock is learned by the agents in the model. The purpose of the simulation is to describe the reaction in
anticipation of, then in reaction to the shock, until the system returns to the old or to a new state of equilibrium. In
most models, this return to equilibrium is only an asymptotic phenomenon, which one must approximate by an horizon
of simulation far enough in the future. Another exercise for which Dynare is well suited is to study the transition path
to a new equilibrium following a permanent shock.

For deterministic simulations, Dynare uses a Newton-type algorithm, first proposed by Laffargue (1990), instead of
a first order technique like the one proposed by Fair and Taylor (1983), and used in earlier generation simulation
programs. We believe this approach to be in general both faster and more robust. The details of the algorithm used in
Dynare can be found in Juillard (1996).

In a stochastic context, Dynare computes one or several simulations corresponding to a random draw of the shocks.
Starting with version 2.3 (not available for Gauss), Dynare uses a second order Taylor approximation of the expectation
functions (see Judd, 1996, Collard and Juillard, 2001a, 2001b, and Schmitt-Grohe and Uribe, 2002).

Starting with version 3.0, it is possible to use Dynare to estimate model parameters either by maximum likelihood as
in Ireland (2004) or using a Bayesian approach as in Rabanal and Rubio-Ramirez (2002), Schorfheide (2000) or Smets
and Wouters (2002).

Currently the development team of Dynare is composed of S. Adjemian, A. Benzougar, M. Juillard and O. Kamenik.
Several parts of Dynare use or have strongly benefited from publicly available programs by F. Collard, L. Ingber, P.
Klein, S. Sakata, F. Schorfheide, C. Sims, P. Soederlind and R. Wouters.

iv

Chapter 1. Introduction
In order to give instructions to Dynare, the user has to write a model file whose file name must terminate by ".mod".
This file contains the description of the model and the computing tasks required by the user.

In practice, the handling of your model file is done in two steps: in the first one, the model and the processing
instructions written by the user in a model file are interpreted and the proper Gauss, Matlab or Scilab instructions
are generated; in the second step, the program actually runs the computations. Both steps are triggered by a single
keyword: Dynare.

1

Introduction

1. Software requirements
This version of Dynare works only under Windows 98/NT/2000/XP. For a Unix version, please, write me.

The Matlab version has been written with Matlab 6.5.1.

The Scilab version has been tested with Scilab 3.0.

The Gauss version of Dynare has been written with Gauss version 3.2. It most likely doesn’t work with previous
versions.

2

Introduction

2. Installation
In case of update from a previous version, it is a good idea to copy the old version in a backup directory so as to be able
to revert to it in case of problems. None of the previous files are usefull anymore, so you are strongly encouraged to
remove them from directory c:\dynare. The Matlab version of Dynare lets you now easily have different versions
of Dynare on your computer.

After installation, Dynare can be used in any directory on your computer. It is best practive to keep your model files in
directories different from the one containing the Dynare toolbox. That way you can upgrade Dynare and discard the
previous version without having to worry about your own files.

2.1. Installing the Matlab version
Starting with version 3.0, by default, Dynare is installed in a directory whose name contains the version number. For
example

Dynare_v3.0

This directory contains several sub-directories, among which matlab, doc and examples.

After unpacking the archive, start the Matlab program and use the menu File/Set path to add the path to Dynare
matlab subdirectory. For example

c:\dynare_v3.0\matlab

2.2. Installing the Scilab version
Unpack the zip file in the directory c:\ (If you want to use another directory, see below). The Scilab version in
automatically installed in c:\dynare\scilab.

Then, find the scilab.star file, in the top directory of your Scilab distribution. Edit this file and add the following
line after similar statements:

load(’c:/dynare/scilab/lib’);

If you installed Dynare for Scilab in a directory different from c:\dynare\scilab, change the above instructions
accordingly and edit the following line in Dynare.sci

command = ’c:\dynare\scilab\dynare_s ’+fname;

3

Introduction

Then, restart Scilab and run the command uplib().

2.3. Installing the Gauss version
Unpack the zip file in the directory c:\ (If you want to use another directory, see below). The Gauss version in
automatically installed in c:\dynare\gauss.

If you had any previous version of Dynare, use the Gauss editor or any text editor to remove all references to it from
the library file user.lcg.

After unpacking the archive, start the Gauss program and type the following:

library pgraph
lib user c:\dynare\gauss\dynare.src
lib user c:\dynare\gauss\dynare1.src
lib user c:\dynare\gauss\dynare2.src
lib user c:\dynare\gauss\dynare3.src

If you installed Dynare for Gauss in a directory different from c:\dynare\gauss, change the above instructions
accordingly and edit the following line in Dynare.src

declare string PARSER = "c:\\dynare\\gauss\\dynare_g ";

4

Chapter 2. Commands
Dynare commands are either single instructions or a block of instructions. Each single instructions or block elements
are terminated by ;. Block of instructions are terminated by end;.

Most Dynare commands have arguments and several accept options, indicated in parentheses after the command
keyword.

In the description of Dynare commands, the following conventions are observed:

• optional arguments or options are indicated between square brackets []

• repreated arguments are indicated by ellipses ...

• INTEGER indicates an integer number

• DOUBLE indicates a double precision number. The following syntaxes are valid: 1.1e3, 1.1E3, 1.1d3, 1.1D3.

• EXPRESSION indicates a mathematical expression valid in the underlying language (Matlab, Scilab or Gauss)

• VARIABLE_NAME indicates a variable name starting with an alphabetical charcater and can’t contain ()+-
*/^=!;:@#. or accentuated characters

• PARAMETER_NAME indicates a parameter name starting with an alphabetical charcater and can’t contain ()+-
*/^=!;:@#. or accentuated characters

• FILENAME indicates a file name valid under your operating system (Windows, Linux or Unix)

5

Commands

1. Executing Dynare

6

Commands

Dynare

Dynare -- executes Dynare

Dynare
Dynare FILENAME[.mod]

Description
Dynare executes instruction included in filename.mod. filename.mod is the name of the model file containing
the model and the processing instructions.

Details
In Matlab, Dynare creates three intermediary files:

• filename.m with the instructions for the simulations
• filename_ff.m with the dynamic model equations
• filename_fff.m with the long run static model equations

In Scilab, Dynare creates three intermediary files:

• filename.sci with the instructions for the simulations
• filename_ff.sci with the dynamic model equations
• filename_fff.sci with the long run static model equations

In Gauss, Dynare creates an intermediary file filename.gau with the instructions for the simulations. The Gauss
version still accepts the former .mdl extension, but it is now deprecated.

These files may be looked at to understand errors reported at the simulation stage.

Examples

Dynare ramst

or

Dynare ramst.mod

7

Commands

2. General declarations

8

Commands

periods

periods -- specifies the number of simulation periods

periods
periods INTEGER;

Description
This command is now deprecated (but will still work for older model files). It is not necessary when no simulation is
performed and is replaced by an option PERIODS in SIMUL and STOCH_SIMUL.

Set the number of periods in the simulation. The periods are numbered from 1 to INTEGER. In perfect foresight
simulations, it is assumed that all future events are perfectly known at the beginning of period 1.

Example

periods 100;

9

Commands

var

var -- declares endogenous variables

var
var VARIABLE_NAME [,] [VARIABLE_NAME ...] ;

Description
This required command declares the endogenous variables in the model. The variable names must start with a letter
and can’t contain the following characters : ()+-*/^=!;:@#. or accentuated characters.

In Gauss, setting _longname = 1 allows the use of more than 8 characters in the variable names and makes a
distinction between lower and upper case letters.

Example

var c gnp q1 q2;

10

Commands

varexo

varexo -- declares exogenous variables

varexo
varexo VARIABLE_NAME [,] [VARIABLE_NAME ...] ;

Description
This optional command declares the exogenous variables in the model. See command var for the syntax of
VARIABLE_NAME.

Exogenous variables are required if the user wants to be able to apply shocks to her model.

Example

varexo m gov;

11

Commands

parameters

parameters -- declares parameters

parameters
parameters PARAMETER_NAME [,] [PARAMETER_NAME ...] ;

Description
This optional command declares parameters used in the model, in variable initialization or in shock declarations.
The parameters must then be assigned values using standard syntax of underlying matrix programming language. Be
carefull not to use names reserved by Dynare or the underlying language (Matlab, Scilab or Gauss).

Example

parameters alpha, bet;

alpha = 0.3;
bet = sqrt(2);

12

Commands

3. Model declaration

13

Commands

model

model -- declares the model equations

model
model [(linear)] ;
(1) EQUATION;
[(1) EQUATION; ...]
end;
(1) EXPRESSION [= EXPRESSION] ;

Description
The equations of the model are written in a block delimited by model; and end;.

There must be as many equations as there are endogenous variables in the model, except when used to compute the
unconstrained optimal policy with olr. The lead and lag of the variables are written in parenthesis immediately after
the variable name. Leads or lags of more than one period are allowed. All the functions available in Matlab, Scilab or
Gauss, respectively, are recognized. Each equation must be terminated by a semicolon (;).

When the equations are written in homogenous form, it is possible to omit the "= 0" part and write only the left hand
side of the equation.

The option linear declares the model as being linear. It avoids to have to declare initial values for computing the
steady state and it sets automatically order=1 in stoch_simul.

Example 1

model;
c = - k + aa*x*k(-1)^alph + (1-delt)*k(-1);
c^(-gam) = (aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam)/(1+bet);
end;

Example 2

model;
c + k - aa*x*k(-1)^alph - (1-delt)*k(-1);
c^(-gam) - (aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam)/(1+bet);
end;

Example 3

model(linear);
x = a*x(-1)+b*y(+1)+e_x;
y = d*y(-1)+e_y;
end;

14

Commands

4. Initial and terminal conditions
In many contexts, it is necessary to compute the steady state of a non-linear model initval specifies then numerical
initial values for the non-linear solver.

Used in perfect foresight mode, the types of forward-loking models for which Dynare was designed require both initial
and terminal conditions. Most often these initial and terminal conditions are static equilibria, but not necessarily.

One typical application is to consider an economy at the equilibrium, trigger a shock in first period, and study the
trajectory of return at the initial equilbrium. To do that, one needs initval and shock(see next section).

Another one is to study, how an economy, starting from arbitrary initial conditions converges toward equilibrium. To
do that, one needs initval and endval;

For models with lags on more than one period, the command histval permits to specify different historical initial
values in different periods.

15

Commands

initval

initval -- specifies numerical starting values for finding the steady state and/or initial values for simulations

initval
initval;
VARIABLE_NAME = EXPRESSION;
[VARIABLE_NAME = EXPRESSION; ...]
end;

Description
EXPRESSION is any valid expression returning a numerical value and can contain already initialized variable names.

The initval; ... end; block serves two purposes. It set the initial and, possibly, terminal conditions for the simulation
and provides numerical initialization for various computation tasks (steady, simul, stoch_simul).

Theoreticaly, initial conditions are only necessary for lagged variables. However, as initval provides also numerical
initialization, it is necessary to provide values for all variables in the model, except if the model is declared as linear.

For stochastic models, it isn’t necessary to delcare 0 as initial values for exogneous stochastic variables as it is the only
possible value.

When the initval block is followed by the command steady, it is not necessary to provide exact initialization values
for the endogenous variables. steady will use the values provided in the initval block as initial guess in the non-linear
equation solver and computes exact values for the endogenous variables at the steady state. The steady state is defined
by keeping constant the value of the exogenous variables.

Example

initval;
c = 1.2;
k = 12;
x = 1;
end;

steady;

16

Commands

endval

endval -- specifies terminal values for deterministic simulations

endval
endval;
VARIABLE_NAME = EXPRESSION;
[VARIABLE_NAME = EXPRESSION; ...]
end;

Description
EXPRESSION is any valid expression returning a numerical value and can contain already initialized variable names.

The optional endval; ... end; block serves two purposes. It set the terminal conditions for the simulation with the
LBJ alogrithm, when those differ from the initial conditions. When it is the case, the endval block also provides the
numerical initialization for various computation tasks (steady, simul), starting in period 1.

Theoreticaly, terminal conditions are required in the LBJ algorithm only for forward variables. However, as endval
provides also numerical initialization, it is necessary to provide values for all variables in the model.

When the endval block is followed by the command steady, it is not necessary to provide exact values for the
endogenous variables. steady will use the values provided in the endval block as initial guess in the non-linear
equation solver and computes exact values for the endogenous variables at the steady state. The steady state is defined
by keeping constant the value of the exogenous variables.

Example

var c k;
varexo x;
...
initval;
c = 1.2;
k = 12;
x = 1;
end;

steady;

endval;
c = 2;
k = 20;
x = 2;
end;

steady;

The initial equilibrium is comptuted by steady for x=1, and the terminal one, for x=2.

17

Commands

histval

histval -- specifies historical values before the start of a simulation

histval
histval;
VARIABLE_NAME (INTEGER) = EXPRESSION;
[VARIABLE_NAME (INTEGER) = EXPRESSION; ...]
end;

Description
EXPRESSION is any valid expression returning a numerical value and can contain already initialized variable names.

In models with lags on more than one period, the optional histval; ... end; block permits to specify different historical
initial values for different periods.

By convention in Dynare, period 1 is the first period of the simulation. Going backward in time, the first period before
the start of the simulation is period 0, then period -1, and so on.

If your lagged variables are linked by identities, be careful to satisfy these identities when you set historical initial
values.

Example

var x y;
varexo e;

model;
x = y(-1)^alpha*y(-2)^(1-alpha)+e;
...
end;

initval;
x = 1;
y = 1;
e = 0.5;
end;

steady;

histval;
y(0) = 1.1;
y(-1) = 0.9;
end;

18

Commands

5. Shocks on exogenous variables
In a deterministic context, when one wants to study the transition of one equilibrium position to another, it is equivalent
to analyze the consequences of a permanent shock and this in done in Dynare through the proper use of initval and
endval.

Another typical experiment is to study the effects of a temporary shock after which the system goes back to the original
equilibrium (if the model is stable ...). A temporary shock is a temporary change of value of one or several exogenous
variables in the model. Temporary shocks are specified with the command shocks.

In a stochastic framework, the exogenous variables take random values in each period. In Dynare, these random values
follow a normal distribution with zero mean, but it belongs to the user to specify the variability of these shocks. The
non-zero elements of the matrix of variance-covariance of the shocks can be entered with the shocks command. Or,
the entire matrix can be direclty entered with Sigma_e. Note that, starting with version 2.5.2, the direct specification
of the internal matrix Sigma_e_, prone to errors, is discouraged.

If the variance of an exogenous variable is set to zero, this variable will appear in the report on policy and transition
functions, but isn’t used in the computation of moments and of Impulse Response Functions. Setting a variance to
zero is an easy way of removing an exogenous shock.

19

Commands

shocks

shocks -- specifies shocks on deterministic or stochastic exogenous variables

shocks
shocks;
(1) DETERMINISTIC SHOCK STATEMENT | (3) STOCHASTIC SHOCK STATEMENT
[(1) DETERMINISTIC SHOCK STATEMENT | (3) STOCHASTIC SHOCK STATEMENT ...]
end;
(1) var VARIABLE_NAME; periods (2) PERIOD STATEMENT; values EXPRESSION;
(2) INTEGER [: INTEGER] [INTEGER [: INTEGER] ...] ;
(3) (4) VARIANCE STATEMENT | (5) COVARIANCE STATEMENT | (6) STANDARD ERROR STATEMENT
(4) var VARIABLE_NAME = EXPRESSION;
(5) var VARIABLE_NAME , VARIABLE_NAME = EXPRESSION;
(6) var VARIABLE_NAME; stderr EXPRESSION;

Description

In deterministic context

For deterministic simulations, the shocks block specifies temporary changes in the value of an exogenous variables.
For permanent shocks, use an endval block.

When specifying shocks on several periods, the values EXPRESSION must return either a scalar value common to
all periods with a shock or a column vector with as many elements as there are periods in the periods statement just
before it.

Example

shocks;
var e;
periods 1;
values 0.5;
var u;
periods 4:5;
values 0;
var v;
periods 4 5 6;
values 0;
var u;
periods 4 5 6;
values 1 1.1 0.9;
end;

In stochastic context

For stochastic simulations (available only in the Matlab or Scilab versions), the shocks block specifies the non zero
elements of the covariance matrix of the shocks.

Example

20

Commands

shocks;
var e = 0.000081;
var e,u = phi*0.009*0.009;
var u = 0.000081;
var v; stderr 0.009;
end;

See also

Sigma_e

21

Commands

Sigma_e

Sigma_e -- specifies directly the covariance matrix of the stochastic shocks

Sigma_e
Sigma_e = [(1) MATRIX ELEMENT [[,](1) MATRIX ELEMENT...] [; (1) MATRIX ELEMENT...]];
(1) INTEGER | DOUBLE | (EXPRESSION)

WARNING: the matrix elements are actually written beween square brackets ([]). Here, the initial [and final] don’t
have the meaning of "optional element" as elsewhere.

Description
The matrix of variance-covariance of the shocks can be directly specified as a upper (or lower) triangular matrix.
Dynare builds the corresponding symmetrix matrix. Each row of the triangular matrix, except the last one, must be
terminated by a semi-colon ’;’. For a given element, an EXPRESSION using predefined parameters is allowed but
must be placed between parentheses. THE ORDER OF THE COVARIANCES IN THE MATRIX IS THE SAME AS
THE ONE USED IN THE VAREXO DECLARATION.

Note
In previous versions, it was possible to directly set Dynare’s internal covariance matrix Sigma_e_. This is still
possible for compatibility with older .mod files, but STRONGLY DISCOURAGED as too prone to error. When
setting Sigma_e_ directly, the order of the exogenous shocks is the ALPHABETICAL order of their names.

Example

varexo u, e;
...
Sigma_e = [0.81 (phi*0.9*0.009); 0.000081];

where the variance of u is 0.81, the variance of e, 0.000081, and the correlation between e and u is phi.

22

Commands

6. Solving and simulating
Dynare has special commands for the computation of the static equilibrium of the model (steady, of the eigenvalues of
the linearized model (check) for dynamics local analysis, of a deterministic simulation (simul) and for solving and/or
simulating a stochastic model (stoch_simul).

23

Commands

steady

steady -- copmutes the steady state of a model

steady
steady [(solve_algo = 0 | 1 | 2)] ;

Options
• solve_algo = 0: uses Matlab Optimization Toolbox FSOLVE (default if Optimization Toolbox version >= 6.5 is

available)
• solve_algo = 1: uses Dynare’s own nonlinear equation solver (default otherwise)
• solve_algo = 2: splits the model into recursive blocks and solves each block in turn. Maybe useful for large models

with bad guess values for the steady state (Thanks to Manfred Gilli for showing me Matlab’s function DMPERM).

Description
Computes the equilibrium value of the endogenous variables for the value of the exogenous variables specified in the
previous initval or endval block.

steady uses an iterative procedure and takes as initial guess the value of the endogenous variables set in the previous
initval or endval block.

For complicated models, finding good numerical initial values for the endogenous variables is the trickiest part of
finding the equilibrium of that model. Often, it is better to start with a smaller model and add new variables one by
one.

Output variables
The steeady state is available in ys_. Endogenous variables are ordered alphabeticaly as in lgy_.

Examples
See initval and endval.

24

Commands

check

check -- computes the eigenvalues of the (linearized) model

check
check ;

Description
Computes the eigenvalues of the model linearized around the values specified by the last initval, endval or steady
statement. Generally, the eigenvalues are only meaningfull if the linearization is done around a steady state of the
model. It is a device for local analysis in the neighborhood of this steady state.

A necessary condition for the uniqueness of a stable equilibrium in the neighborhood of the steady state is that there are
as many eigenvalues larger than one in modulus as there are forward looking variables in the system. An additional
rank condition requires that the square submatrix of the right Schur vectors corresponding to the forward looking
variables (jumpers) and to the explosive eigenvalues must have full rank.

Output variables
check returns the eigenvalues in the global variable eigenvalues_.

25

Commands

simul

simul -- simulates a deterministic model

simul
simul [(periods=INTEGER)] ;

Description
Triggers the computation of a deterministic simulation of the model for the number of periods set in the option
periods=. simul uses a Newton method to solve simultaneously all the equations for every period (see Juillard,
1996).

Output variables
the simulated variables are available in global matrix y_. The variables are arranged row by row, in alphabetical order.

26

Commands

stoch_simul

stoch_simul -- computes the solution and simulates the model

stoch_simul
stoch_simul [(OPTION,...)] VARIABLE_NAME [VARIABLE_NAME...] ;

Options
• ar = INTEGER: Order of autocorrelation coefficients to compute and to print (default = 5) n
• dr_algo = 0 | 1: specifies the algorithm used for computing the quadratic approximation of the decision rules:

• 0: uses a pure perturbation approach as in Schmitt-Grohe and Uribe (2002) (default)
• 1: moves the point around which the Taylor expansion is computed toward the means of the distribution as in

Collard and Juillard (2001)
• drop = INTEGER: number of points dropped at the beginning of simulation before computing the summary

statistics (default = 100)
• hp_filter = INTEGER: uses HP filter with lambda = INTEGER before computing moments (default: no filter)
• hp_ngrid = INTEGER: number of points in the grid for the discreet Inverse Fast Fourier Transform used in the

HP filter computation. It may be necessary to increase it for highly autocorrelated processes (default = 512)
• irf = INTEGER: number of periods on which to compute the IRFs (default = 40)
• relative_irf requests the computation of normalized IRFs in percentage of the standard error of each shock
• linear: indicates that the original model is linear (put it rather in the MODEL command).
• nocorr: doesn’t print the correlation matrix (printing them is the default)
• nofunctions: doesn’t print the coefficients of the approximated solution (printing them is the default)
• nomoments: doesn’t print moments of the endogenous variables (printing them is the default)
• periods = INTEGER: specifies the number of periods to use in simulations. At order=1, no simulation is necessary

to compute theoretical moments and IRFs. A number of periods larger than one triggers automatically option simul
(default = 0).

• order = 1 | 2 : order of Taylor approximation (default = 2)
• qz_criterium = INTEGER | DOUBLE: value used to split stable from unstable eigenvalues in reordering the

Generalized Schur decomposition used for solving 1st order problems (default 1.000001)
• replic = INTEGER: number of simulated series used to compute the IRFs (default = 1, if order = 1, and 50

otherwise)
• simul: computes a stochastic simulation of the model for the number of periods specified in the periods statement.

Uses initval values, possibly recomputed by steady, as initial values for the simulation. The simulated endogenous
variables are made available to the user in a vector for each variable and in the global matrix y_. The variables are
ordered alphabeticaly in the y_ matrix (default: no simulation)

• simul_seed = INTEGER|DOUBLE: specifies a seed for the random generator so as to obtain the same random
sample at each run of the program. Otherwise a different sample is used for each run (default: seed not specified).

• all steady options (see steady)

When a list of VARIABLE_NAMEs is specified, results are displayed only for these variables.

Description
stoch_simul computes a Taylor approximation of the decision and transition functions for the model, impulse response
functions and various descriptive statistics (moments, variance decomposition, correlation and autocorrelation coeffi-
cients). For correlated shocks, the variance decomposition is computed as in the VAR literature through a Cholesky
decomposition of the covariance matrix of the exogenous variables. When the shocks are correlated, the variance
decomposition depends upon the order of the variables in the varexo command.

Variance decomposition, correlation, autocorrelation are only displayed for variables with positive variance. Impulse
response functions are only ploted for variables with response larger than 1e-10.

27

Commands

Currently, the IRF’s are only ploted for 12 variables. Select the ones you want to see, if your model contains more
than 12 endogenous variables.

Currently, the HP filter is only available when computing theoretical moments, not for for moments of simulated
variables.

The covariance matrix of the shocks is specified either with the shocks command or with the Sigma_e command.

Decision rules
The approximated solution of a model takes the form of a set of decision rules or transition equations expressing the
current value of the endogenous variables of the model as function of the previous state of the model and shocks
oberved at the beginning of the period.

First order approximation

yt = ys + A yt-1 + B ut

where ys is the steady state value of y.

Second order approximation

yt = ys + 0.5∆2 + A yt-1 + B ut + 0.5C(yt-1⊗yt-1) + 0.5D(ut⊗ut) + E(yt-1⊗ut)

where ys is the steady state value of y and ∆2 is the shift effect of the variance of future shocks.

Output variables
stoch_simul sets several fields in global variable oo_. The descriptive statistics are theoretical moments when no
simulation is requested and otherwise represent the moments of the simulated variables.

• the coefficients of the decision rules are stored in global structuredr_. Here is the correspondance with the symbols
used in the above description of the decision rules:

Decision rule coefficients
• ys: dr_.ys. The vector rows correspond to variables in alphabetical order of the variable names.

• ∆2: dr_.ghs2. The vector rows correspond to re-ordered variables (see below).

• A: dr_.ghx. The matrix rows correspond to re-ordered variables. The matrix columns correspond to state
variables (see below).

• B: dr_.ghu. The matrix rows correspond to re-ordered variables (see below). The matrix columns correspond
to exogenous variables in alphabetical order.

• C: dr_.ghxx. The matrix rows correspond to re-ordered variables. The matrix columns correspond to the
Kronecker product of the vector of state variables (see below).

• D: dr_.ghuu. The matrix rows correspond to re-ordered variables (see below). The matrix columns
correspond to the Kronecker product of exogenous variables in alphabetical order.

• E: dr_.ghxu. The matrix rows correspond to re-ordered variables. The matrix columns correspond to
the Kronecker product of the vector of state variables (see below) by the vector of exogenous variables in
alphabetical order.

28

Commands

When reordered, the variables are stored in the following order: static variables, purely predetermined variables
(variables that appear only at the current and lagged periods in the model), variables that are both predetermined
and forward-looking (variables that appear at the current, future and lagged periods in the model), purely forward-
looking variables (variables that appear only at the current and future periods in the model). In each category, the
variables are arranged alphabetically.

The state variables of the model are purely predetermined variables and variables that are both predetermined
and forward-looking. They are ordered in that order. When there are lags on more than one period, the state
variables are ordered first according to their lag: first variables from the previous period, then variables from two
periods before and so on. Note also that when a variable appears in the model at a lag larger than one period, it is
automatically included at all inferior lags.

• The mean of the endogenous variables is available in the vector oo_.mean. The variables are arranged in
alphabetical order.

• The matrix of variance-covariance of the endogenous variables in the matrix oo_.var. The variables are arranged
in alphabetical order.

• The matrix of autocorrelation of the endogenous variables are made available in cell array oo_.autocorr. The
element number of the matrix in the cell array corresponds to the order of autocorrelation. The option AR (default
ar=5) specifies the number of autocorrelation matrices available.

• Simulated variables, when they have been computed, are available in Matlab vectors with the same name as the
endogenous variables.

• Impulse responses, when they have been computed, are available in Matlab vectors witht the following naming
convention VARIABLE_NAME_shock name.

gnp_ea contains the effect on gnp of a one standard deviation shock on ea.

Example 1

shocks;
var e;
stderr 0.0348;
end;

stoch_simul;

performs the simulation of the 2nd order approximation of a model with a single stochastic shock, e, with a standard
error of 0.0348.

Example 2

stoch_simul(linear,irf=60) y k;

performs the simulation of a linear model and displays impulse response functions on 60 periods for variables y and
k.

29

Commands

7. Estimation
Provided that you have observations on some endogenous variables, it is possible to use Dynare to estimate some or
all parameters. Both maximum likelihood and Bayesian techniques are available.

Note that in order to avoid stochastic singularity, you must have at least as many shocks or measurement errors in your
model as you have observed variables.

30

Commands

varobs

varobs -- lists the observed variables

varobs
varobs VARIABLE_NAME ... [VARIABLE_NAME ...] ;

Description
varobs lists the name of observed endogenous variables for the estimation procedure. These variables must be
available in the data file (see estimation).

Example

varobs C y rr;

31

Commands

observation_trends

observation_trends -- specifies linear trends for observed variables

observation_trends
observation_trends;
VARIABLE_NAME (EXPRESSION);
end;

Description
observation_trends specifies trends for observed variables as functions of model parameters. In most cases, variables
shouldn’t be centered when observation_trends is used.

Example

observation_trends;
Y (eta);
P (mu/eta);
end;

32

Commands

estimated_params

estimated_params -- specifies the estimated parameters and their prior

estimated_params

Syntax I (maximum likelihood estimation)
estimated_params;
{ stderr VARIABLE_NAME | PARAMETER_NAME } , INITIAL_VALUE [, LOWER_BOUND] [,
UPPER_BOUND] ;
...
>end;

Syntax II (Bayesian estimation)
estimated_params;
{ stderr VARIABLE_NAME | PARAMETER_NAME } , PRIOR_SHAPE , PRIOR_MEAN , PRIOR_STANDARD_ERROR
[, PRIOR_3RD_PARAMETER] [, PRIOR_4TH_PARAMETER] [, SCALE_PARAMETER] ;
...
end;

Description
The estimated_params;....end; block lists all parameters to be estimated and specifies bounds and priors as necessary.

Estimated parameter specification
Each line corresponds to an estimated parameter and follows this syntax:

• stderr is a keyword indicating that the standard error of the exogenous variable, VARIABLE_NAME, or of the
observation error associated with endogenous observed variable, VARIABLE_NAME, is to be estimated

• PARAMETER_NAME is the name of a model parameter to be estimated
• INITIAL_VALUE specifies a starting value for maximum likelihood estimation
• LOWER_BOUND specifies a lower bound for the parameter value in maximum likelihood estimation
• UPPER_BOUND specifies an upper bound for the parameter value in maximum likelihood estimation
• PRIOR_SHAPE is prior density among beta_pdf, gamma_pdf, normal_pdf, inv_gamma_pdf,

inv_gamma1_pdf, inv_gamma2_pdf, uniform_pdf
• PRIOR_MEAN is the mean of the prior distribution
• PRIOR_STANDARD_ERROR is the standard error of the prior distribution
• PRIOR_3RD_PARAMETER is a third parameter of the prior used for generalized beta distribution, generalized

gamma and for the uniform distribution (default 0)
• PRIOR_4TH_PARAMETER is a fourth parameter of the prior used for generalized beta distribution, generalized

gamma and for the uniform distribution (default 1)
• SCALE_PARAMETER is the scale parameter to be used for the jump distribution of the Metropolis-Hasting

algorithm

Note
At minimum, one must specify the name of the parameter and an initial guess. That will trigger unconstrained
maximum likelihood estimation.

Note
As one uses options more towards the end of the list, all previous options must be filled: if you want to specify
jscale, you must specify prior_p3 and prior_p4. Use default values, if these parameters don’t apply.

33

Commands

estimated_params_init

estimated_params_init -- specifies initial values for optimization

estimated_params_init
estimated_params_init;
{ stderr VARIABLE_NAME | PARAMETER_NAME } , INITIAL_VALUE ;
...
>end;

Description
The estimated_params_init;....end; block declares numerical initial values for the optimizer when these ones are
different from the prior mean

Estimated parameter initial value specification
Each line corresponds to an estimated parameter and follows this syntax:

• stderr is a keyword indicating that the standard error of the exogenous variable, VARIABLE_NAME, or of the
observation error associated with endogenous observed variable, VARIABLE_NAME, is to be estimated

• PARAMETER_NAME is the name of a model parameter to be estimated
• INITIAL_VALUE specifies a starting value for maximum likelihood estimation

34

Commands

estimated_params_bounds

estimated_params_bounds -- specifies lower and upper bounds for the estimated parameters

estimated_params_bounds
estimated_params_bounds;
{ stderr VARIABLE_NAME | PARAMETER_NAME } , LOWER_BOUND , UPPER_BOUND ;
...
end;

Description
The estimated_params;....end; block lists all parameter to be estimated and specifies bounds and priors when
required.

Estimated parameter specification
Each line corresponds to an estimated parameter and follows this syntax:

• stderr is a keyword indicating that the standard error of the exogenous variable, VARIABLE_NAME, or of the
observation error associated with endogenous observed variable, VARIABLE_NAME, is to be estimated

• PARAMETER_NAME is the name of a model parameter to be estimated
• LOWER_BOUND specifies a lower bound for the parameter value in maximum likelihood estimation
• UPPER_BOUND specifies an upper bound for the parameter value in maximum likelihood estimation

35

Commands

estimation

estimation -- computes estimation.

estimation
estimation [(OPTIONS)] ;

OPTIONS
• datafile = FILENAME: the datafile (a .m file or a .mat file)
• nobs = INTEGER: the number of observations to be used (default: all observations in the file)
• first_obs = INTEGER: the number of the first observation to be used (default = 1)
• prefilter = 1: the estimation procedure demeans the data (alternatives not yet implemented)
• presample = INTEGER: the number of observations to be skipped before evaluating the likelihood (default = 1)
• loglinear: computes a log--linear approximation of the model instead of a linear (default) approximation. The data

must correspond to the definition of the variables used in the modelx.
• nograph: no graphs should be plotted
• lik_init: INTEGER: type of initialization of Kalman filter.

• 1 (default): for stationary models, the initial matrix of variance of the error of forecast is set equal to the
unconditional variance of the state variables.

• 2: for nonstationary models: a wide prior is used with an initial matrix of variance of the error of forecast
diagonal with 10 on the diagonal.

• conf_sig = {INTEGER | DOUBLE}: the level for the confidence intervals reported in the results (default = 0.90)
• mh_replic = INTEGER: number of replication for Metropolis Hasting algorithm. For the time being, mh_replic

should be larger than 1200 (default = 20000.)
• mh_nblocks = INTEGER: number of paralletl chains for Metropolis Hasting algorithm (default = 2).
• mh_drop = DOUBLE: the fraction of initially generated parameter vectors to be dropped before using posterior

simulations (default = 0.5)
• mh_jscale = DOUBLE: the scale to be used for the jumping distribution in MH algorithm. The default value is

rarely satisfactory. This option must be tune to obtain, ideally, an accpetation rate of 25% in the Metropolis-
Hastings algorithm (default = 0.2).

• mh_init_scale=DOUBLE: the scale to be used for drawing the initial value of the Metropolis-Hastings chain
(default=2*mh_scale).

• mode_file=FILENAME: name of the file containing previous value for the mode. When computing the mode,
Dynare stores the mode (xparam1) and the hessian (hh) in a file called MODEL NAME_mode.

• mode_compute=INTEGER: specifies the optimizer for the mode computation.
• 0: the mode isn’t computed. mode_file must be specified
• 1: uses Matlab fmincon.
• 2: uses Lester Ingber’s Adaptive Simulated Annealing.
• 3: uses Matlab fminunc.
• 4 (default): uses Chris Sim’s csminwel.

• mode_check: when mode_check is set, Dynare plots the posterior density for values around the computed mode
for each estimated parameter in turn. This is helpful to diagnose problems with the optimizer.

• prior_trunc=DOUBLE: probability of extreme values of the prior density that is ignored when computing bounds
for the parameters (default=1e-32).

• load_mh_file: when load_mh_file is declared, Dynare adds to previous Metropolis-Hastings simulations instead
of starting from scratch.

• optim=(fmincon options): can be used to set options for fmincon, the optimizing function of Matlab
Optimizaiton toolbox. Use Matlab syntax for these options

(default: (’display’,’iter’,’LargeScale’,’off’,’MaxFunEvals’,100000,’TolFun’,1e-8,’TolX’,1e-6))
• nodiagnostic: doesn’t compute the convergence diagnostics for Metropolis (default: diagnostics are computed and

displayed).
• bayesian_irf triggers the computation of the posterior distribution of IRFs. The length of the IRFs are controlled

by the irf option

36

Commands

• moments_varendo triggers the computation of the posterior distribution of the theoretical moments of the
endogenous variables

• filtered_vars triggers the computation of the posterior distribution of filtered endogenous variables and shocks
• smoother triggers the computation of the posterior distribution of smoothered endogenous variables and shocks
• forecast = INTEGER computes the posterior distribution of a forecast on INTEGER periods after the end of the

sample used in estimation
• tex requests the printing of results and graphs in TeX tables and graphics that can be later directly included in

Latex files
• All options for stoch_simul

Note
If no jscale parameter is used in estimated_params, the procedure uses mh_jscale for all parameters. If mh_jscale
option isn’t set, the procedure uses 0.2 for all parameters.

Results
• results from posterior optimization (also for maximum likelihood)
• marginal log density
• mean and shortest confidence interval from posterior simulation
• Metropolis-Hastings convergence graphs that still need to be documented
• graphs with prior, posterior and mode
• graphs of smoothed shocks, smoothed observation errors, smoothed and historical variables

Output variables

• The estimated parameters are available in global variables with the same name.

• The smooth estimates for the state variables are available in oo_.VARIABLE_NAME_smooth.

• The smooth estimates for the shocks are available in oo_.VARIABLE_NAME_smooth.

• The smooth estimates for the measurement errors, if applicable, are available in oo_.VARIABLE_NAME_obs_err_smooth.

37

Commands

unit_root_vars

unit_root_vars -- declares unit-root variables for estimation

unit_root_vars
unit_root_vars VARIABLE_NAME [VARIABLE_NAME ...] ;

Description
unit_root_vars is used to declare unit-root variables of a model so that a diffuse prior can be used in the initialization
of the Kalman filter for these variables only. For stationary variables, the unconditional covariance matrix of these
variables is used for initialization. The algorithm to compute a true diffuse prior is taken from Durbin and Koopman
(2001, 2003).

When unit_root_vars is used the lik_init option of estimation has no effect.

38

Commands

8. Displaying and saving results
Dynare has comments to plot the results of a simulation and to save the results.

39

Commands

rplot

rplot -- plot variables

rplot
rplot VARIABLE_NAME [VARIABLE_NAME ...] ;

Description
Plots one or several variables

40

Commands

dynatype

dynatype -- print simulated variables

dynatype
dynatype [(FILENAME)] VARIABLE_NAME [VARIABLE_NAME ...] ;

Description
DYNATYPE prints the listed variables in a text file named FILENAME. If no VARIABLE_NAME are listed, all
endogenous variables are printed.

41

Commands

dynasave

dynasave -- save simulated variables in a binary file

dynasave
dynasave [(FILENAME)] VARIABLE_NAME [VARIABLE_NAME ...] ;

Description
DYNASAVE saves the listed variables in a binary file named FNAME. If no VARIABLE_NAME are listed, all
endogenous variables are saved.

In Matlab, variables saved with the DYNASAVE command can be retrieved by the Matlab command LOAD -MAT
FILENAME.

42

Chapter 3. Examples
Fabrice Collard (GREMAQ, University of Toulouse) has written a guide to stochastic simulations with Dynare entitled
"Dynare in Practice" which is in guide.pdf.

43

Bibliography
Raouf Boucekkine, 1995, “An alternative methodology for solving nonlinear forward-looking models”, Journal of Economic

Dynamics and Control, 19, 711-734,

Fabrice Collard and Michel Juillard, 2001, “Accuracy of stochastic perturbation methods: The case of asset pricing models”,
Journal of Economic Dynamics and Control, 25, 979-999,

Fabrice Collard and Michel Juillard, 2001, “A Higher-Order Taylor Expansion Approach to Simulation of Stochastic Forward-
Looking Models with an Application to a Non-Linear Phillips Curve”, Computational Economics, 17, 125-139,

J. Durbin and S.J. Koopman, 2001, Time Series Analysis by State Space Methods, Oxford University Press,

Ray Fair and John Taylor, 1983, “Solution and Maximum Likelihood Estimation of Dynamic Nonlinear Rational Expectation
Models”, Econometrica, 51, 1169-1185,

Jesus Fernandez-Villaverde and Juan Rubio-Ramirez, 2004, “Comparing Dynamic Equilibrium Economies to Data: A Bayesian
Approach”, Journal of Econometrics, 123, 153-187,

Peter Ireland, 2004, “A Method for Taking Models to the Data”, Journal of Economic Dynamics and Control, 28, 1205-26,

Kenneth Judd, 1996, “Approximation, Perturbation, and Projection Methods in Economic Analysis”, Hans Amman, David
Kendrick, and John Rust, Handbook of Computational Economics, 1996, North Holland Press, 511-585,

Michel Juillard, 1996, Dynare: A program for the resolution and simulation of dynamic models with forward variables through
the use of a relaxation algorithm, CEPREMAP, Couverture Orange, 9602,

S.J. Koopman and J. Durbin, 2003, “Filtering and Smoothing of State Vector for Diffuse State Space Models”, Journal of Time
Series Analysis, 24, 85-98,

Jean-Pierre Laffargue, “Résolution d’un modèle macroéconomique avec anticipations rationnelles”, 1990, Annales d’Economie
et Statistique, 17, 97-119,

Thomas Lubik and Frank Schorfheide, 2003, Do Central Banks Target Exchange Rates? A Structural Investigation, University
of Pennsylvania,

Pau Rabanal and Juan Rubio-Ramirez, 2003, Comparing New Keynesian Models of the Business Cycle: A Bayesian Approach,
Atlanta Fed, Working Paper, 2001-22a, rev 2003,

Frank Schorfheide, 2000, “Loss Function-based evaluation of DSGE models”, Journal of Applied Econometrics, 15, 645-70,

Stephanie Schmitt-Grohe and Martin Uribe, 2002, Solving Dynamic General Equilibrium Models Using a Second-Order
Approximation to the Policy Function, Rutgers University,

Frank Smets and Rafael Wouters, 2002, An Estimated Stochastic Dynamic General Equilibrium Model of the Euro Area,
European Central Bank, ECB Working Paper, 171,

44

Index
C
check25

D
Dynare7
dynasave42
dynatype41

E
endval17
estimated_params33
estimated_params_bounds35
estimated_params_init34
estimation36

H
histval18

I
initval16

M
model14

O
observation_trends32

P
parameters12
periods9

R
rplot40

S
shocks20
simul26
stoch_simul27

V
var10
varexo11
varobs31

45

	DYNARE MANUAL
	Preface
	Introduction
	Software requirements
	Installation

	Commands
	Executing Dynare
	General declarations
	Model declaration
	Initial and terminal conditions
	Shocks on exogenous variables
	Solving and simulating
	Estimation
	Displaying and saving results

	Examples
	Bibliography
	Index

