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1 General Idea

In order to assess the overall fit of a DSGE model (M1) it is useful to compute posterior
odds (or Bayes factors) of the DSGE model versus a more general reference model, such as
a VAR (M0). The Bayes factor is given by

B(M1,M0) =
p(Y |M1)
p(Y |M0)

(1)

The marginal data densities p(Y |Mi) are defined as

p(Y |Mi) =
∫

p(Y |θ(i),Mi)p(θ(i)|Mi)dθ(i), (2)

where p(Y |θ(i),Mi) is the likelihood function for model Mi and p(θ(i)|Mi) is the prior
density for the parameters of model Mi. For the Bayes factor to be well defined, the priors
have to be proper probability density functions that integrate to one.

2 Reference Model

Vector autoregressions (VAR) can serve as reference models for the evaluation of DSGE
models. For instance, consider the following Gaussian bivariate VAR(2).
[

y1,t

y2,t

]
=

[
α1

α2

]
+

[
β11 β12

β21 β22

][
y1,t−1

y2,t−1

]
+

[
γ11 γ12

γ21 γ22

][
y1,t−2

y2,t−2

]
+

[
u1,t

u2,t

]
(3)

Define yt = [y1,t, y2,t]′, xt = [y′t−1, y
′
t−2, 1]′, and ut = [u1,t, u2,t]′ and

Φ =




β11 β21

β12 β22

γ11 γ21

γ12 γ22

α1 α2




. (4)

The VAR can be rewritten as follows

y′t = x′tΦ + u′t, t = 1, . . . , T, ut ∼ iidN (0, Σu) (5)
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or in matrix form
Y = XΦ + U. (6)

We denote the dimension of yt by n.

2.1 Priors from Dummy Observations

Suppose we have T ∗ dummy observations (Y ∗, X∗). The likelihood function for the dummy
observations is of the form

p(Y ∗|Φ, Σu) = (7)

(2π)−nT∗/2|Σu|−T∗/2 exp
{
−1

2
tr[Σ−1

u (Y ∗′Y ∗ − Φ′X∗′Y ∗ − Y ∗′X∗Φ + Φ′X∗′X∗Φ)]
}

.

If we combine the dummy observations with actual observations we obtain a likelihood
function that can be factorized as follows

p(Y ∗, Y |Φ, Σu) = p(Y ∗(θ)|Φ, Σu)p(Y |Φ, Σu) (8)

This factorization suggests that the term p(Y ∗|Φ, Σu) can be interpreted as a prior density
for Φ and Σu.

Combining (7) with the improper prior p(Φ, Σu) ∝ |Σu|−(n+1)/2 yields

p(Φ, Σu) = c−1
∗ |Σu|−

T∗+n+1
2

{
−1

2
tr[Σ−1

u (Y ∗′Y ∗ − Φ′X∗′Y ∗ − Y ∗′X∗Φ + Φ′X∗′X∗Φ)]
}

,

(9)
where

c∗ = (2π)
nk
2 |X∗′X∗|−n

2 |S∗|−T∗−k
2 (10)

2
n(T∗−k)

2 π
n(n−1)

4

n∏

i=1

Γ[(T ∗ − k + 1− i)/2],

k is the dimension of xt and Γ[·] denotes the gamma function. Moreover,

Φ̂∗ = (X∗′X∗)−1X∗′Y ∗

S∗ = (Y ∗ −X∗Φ̂∗)′(Y ∗ −X∗Φ̂∗).

Details of this calculation can be found in Zellner (1971). The implementation of priors
through dummy variables is often called mixed estimation and dates back to Theil and
Goldberger (1961).

2.2 Minnesota Prior and Dummy Observations

The Matlab program varprior.m, written by Chris Sims implements a version of the Min-
nesota Prior (Doan, Litterman, and Sims, 1984). A brief description follows.

Preliminaries: Based on a short presample Y0 (typically the observations used to initialized
the lags of the VAR) one calculates: s = std(Y0) and ȳ = mean(Y0). In addition there are
a number of tuning parameters for the prior
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• τ is the overall tightness of the prior. Large values imply a small prior covariance
matrix.

• d: the variance for the coefficients of lag h is scaled down by the factor l−2d.

• w: determines the weight for the prior on Σu. Suppose that Zi = N (0, σ2). Then an
estimator for σ2 is σ̂2 = 1

w

∑w
i=1 Z2

i . The larger w, the more informative the estimator,
and in the context of the VAR, the tighter the prior.

• λ and µ: additional tuning parameters.

The dummy observations can be classified as follows:

• Dummies for the β coefficients:
[

τs1 0
0 τs2

]
=

[
τs1 0 0 0 0
0 τs2 0 0 0

]
Φ + u′

The first observation implies, for instance, that

τs1 = τs1β11 + u1 =⇒ β11 = 1− u1

τs1
=⇒ β11 ∼ N

(
1,

Σu,11

τ2s2
1

)

0 = τs1β21 + u2 =⇒ β21 = − u2

τs1
=⇒ β21 ∼ N

(
0,

Σu,22

τ2s2
1

)

• Dummies for the γ coefficients:
[

0 0
0 0

]
=

[
0 0 τs12d 0 0
0 0 0 τs22d 0

]
Φ + u′

• The prior for the covariance matrix is implemented by
[

s1 0
0 s2

]
=

[
0 0 0 0 0
0 0 0 0 0

]
Φ + u′

Note: I think the code is only valid for w = 1. In general one needs w of these
observations.

• Co-persistence prior dummy observations, reflecting the belief that when data on all
y’s are stable at their initial levels, thy will tend to persist at that level:

[
λȳ1 λȳ2

]
=

[
λȳ1 λȳ2 λȳ1 λȳ2 λ

]
Φ + u′

• Own-persistence prior dummy observations, reflecting the belief that when yi has been
stable at its initial level, it will tend to persist at that level, regardless of the value of
other variables:

[
µȳ1 0
0 µȳ2

]
=

[
µȳ1 0 µȳ1 0 0
0 µȳ2 0 µȳ2 0

]
Φ + u′
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2.3 Training Sample Priors

In the same way we constructed a prior from dummy observations, we can also construct a
prior from a training sample. Suppose we split the actual sample Y = [Y −, Y +], where Y −

is interpreted as training sample, then

p(Φ, Σu) = c−1
− |Σu|−

T−+n+1
2

{
−1

2
tr[Σ−1

u (Y −′Y − − Φ′X−′Y − − Y −′X−Φ + Φ′X−′X−Φ)]
}

,

(11)
Of course one can also combine the dummy observations and training sample to construct
a prior distribution.

2.4 Marginal Data Density

Suppose that we are using a prior constructed from a training sample and dummy observa-
tions. Then the marginal data density is given by

p(Y +|Y −, Y ∗,M0) =
∫

p(Y +, Y −, Y ∗|Φ, Σu)dΦdΣu∫
p(Y −, Y ∗|Φ,Σu)dΦdΣu

(12)

where the integrals in the numerator and denominator are given by the appropriate modifi-
cation of c∗ defined above. This calculation is implemented by the procedure mgnldnsty.m.
More specifically:

∫
p(Y |Φ, Σu)dΦdΣu = π−

T−k
2 |X ′X|−n

2 |S|−T−k
2 π

n(n−1)
4

n∏

i=1

Γ[(T − k + 1− i)/2], (13)

where

Φ̂ = (X ′X)−1X ′Y

S = (Y −XΦ̂)′(Y −XΦ̂).

2.5 Comparison with DSGE Model

If a DSGE model is compared to a VAR with training sample prior, then the marginal data
density for the DSGE model should be adjusted to reflect the use of the training sample.
Note that,

p(Y +|Y −,M1) =
p(Y +, Y −|M1)

p(Y −1|M1)
, (14)

which amounts to running the marginal data density procedure for DSGE models in DYNARE
twice: once for the training sample Y − only (requires separate calculation of posterior mode,
hessian, and a separate run of the Metropolis algorithm) and, second, for the combined sam-
ple Y = [Y −, Y +].
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3 Recommendations for Dynare

• Incorporate the VAR procedures provided by Chris Sims. Check whether the vprior.w
option is correctly implemented. Let users choose the extent of training sample and
the tuning parameters for the Minnesota prior.

• If user chooses to use a training sample prior, then automatically adjust the calculation
of the marginal data density for the DSGE model to account for training sample.
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