
DSGE Models with Dynare++. A Tutorial.

Ondra Kameńık

February 2011, updated August 2016

Contents

1 Setup 2

2 Sample Session 2

3 Sample Optimal Policy Session 6

4 What Dynare++ Calculates 9
4.1 Decision Rule Form . 10
4.2 Taking Steps in Volatility Dimension 11
4.3 Simulating the Decision Rule . 11

4.3.1 Simulations With Real-Time Statistics 11
4.3.2 Conditional Distributions 12
4.3.3 Random Numbers . 12

4.4 Numerical Approximation Checks 13

5 Optimal Policy with Dynare++ 13
5.1 First Order Conditions . 14
5.2 Initial Guess for Deterministic Steady State 15
5.3 Optimal Ramsey Policy . 16

6 Running Dynare++ 16
6.1 Command Line Options . 17
6.2 Dynare++ Model File . 20
6.3 Incompatibilities with Matlab Dynare 21

7 Dynare++ Output 22
7.1 Auxiliary Variables . 22
7.2 MAT File . 23
7.3 Journal File . 25
7.4 Dump File . 26
7.5 Matlab Scripts for Steady State Calculations 26
7.6 Custom Simulations . 27

1

1 Setup

The Dynare++ setup procedure is pretty straightforward as Dynare++ is in-
cluded in the Dynare installation packages which can be downloaded from
http://www.dynare.org. Take the following steps:

1. Add the dynare++ subdirectory of the root Dynare installation directory
to the your operating system path. This ensures that your OS will find
the dynare++ executable.

2. If you have MATLAB and want to run custom simulations (see 7.6), then
you need to add to your MATLAB path the dynare++ subdirectory of
the root Dynare installation directory, and also directory containing the
dynare simul MEX file (note the trailing underscore). The easiest way
to add the latter is to run Dynare once in your MATLAB session (even
without giving it any MOD file).

2 Sample Session

As an example, let us take a simple DSGE model with time to build, whose
dynamic equilibrium is described by the following first order conditions:

ctθh
1+ψ
t = (1− α)yt

βEt

[
exp(bt)ct

exp(bt+1)ct+1

(
exp(bt+1)α

yt+1

kt+1
+ 1− δ

)]
= 1

yt = exp(at)k
α
t h

1−α
t

kt = exp(bt−1)(yt−1 − ct−1) + (1− δ)kt−1
at = ρat−1 + τbt−1 + εt

bt = τat−1 + ρbt−1 + νt

The convention is that the timing of a variable reflects when this variable is
decided. Dynare++ therefore uses a “stock at the end of the period” notation
for predetermined state variables (see the Dynare manual for details).

The timing of this model is that the exogenous shocks εt, and νt are ob-
served by agents in the beginning of period t and before the end of period t
all endogenous variables with index t are decided. The expectation operator Et
works over the information accumulated just before the end of the period t (this
includes εt, νt and all endogenous variables with index t).

The exogenous shocks εt and νt are supposed to be serially uncorrelated with
zero means and time-invariant variance-covariance matrix. In Dynare++, these
variables are called exogenous; all other variables are endogenous. Now we are
prepared to start writing a model file for Dynare++, which is an ordinary text
file and could be created with any text editor.

2

http://www.dynare.org

The model file starts with a preamble declaring endogenous and exogenous
variables, parameters, and setting values of the parameters. Note that one can
put expression on right hand sides. The preamble follows:

var Y, C, K, A, H, B;

varexo EPS, NU;

parameters beta, rho, alpha, delta, theta, psi, tau;

alpha = 0.36;

rho = 0.95;

tau = 0.025;

beta = 1/(1.03^0.25);

delta = 0.025;

psi = 0;

theta = 2.95;

The section setting values of the parameters is terminated by a beginning of
the model section, which states all the dynamic equations. A timing convention
of a Dynare++ model is the same as the timing of our example model, so we
may proceed with writing the model equations. The time indexes of ct−1, ct,
and ct+1 are written as C(-1), C, and C(1) resp. The model section looks as
follows:

model;

C*theta*H^(1+psi) = (1-alpha)*Y;

beta*exp(B)*C/exp(B(1))/C(1)*

(exp(B(1))*alpha*Y(1)/K(1)+1-delta) = 1;

Y = exp(A)*K^alpha*H^(1-alpha);

K = exp(B(-1))*(Y(-1)-C(-1)) + (1-delta)*K(-1);

A = rho*A(-1) + tau*B(-1) + EPS;

B = tau*A(-1) + rho*B(-1) + NU;

end;

At this point, almost all information that Dynare++ needs has been pro-
vided. Only three things remain to be specified: initial values of endogenous
variables for non-linear solver, variance-covariance matrix of the exogenous
shocks and order of the Taylor approximation. Since the model is very sim-
ple, there is a closed form solution for the deterministic steady state. We use it
as initial values for the non-linear solver. Note that the expressions on the right
hand-sides in initval section can reference values previously calculated. The
remaining portion of the model file looks as follows:

initval;

A = 0;

B = 0;

H = ((1-alpha)/(theta*(1-(delta*alpha)

/(1/beta-1+delta))))^(1/(1+psi));

Y = (alpha/(1/beta-1+delta))^(alpha/(1-alpha))*H;

K = alpha/(1/beta-1+delta)*Y;

3

C = Y - delta*K;

end;

vcov = [

0.0002 0.00005;

0.00005 0.0001

];

order = 7;

Note that the order of rows/columns of the variance-covariance matrix cor-
responds to the ordering of exogenous variables in the varexo declaration. Since
the EPS was declared first, its variance is 0.0002, and the variance of NU is 0.0001.

Let the model file be saved as example1.mod. Now we are prepared to solve
the model. At the operating system command prompt1 we issue a command:

dynare++ example1.mod

When the program is finished, it produces two output files: a journal file
example1.jnl and a Matlab MAT-4 example1.mat. The journal file contains
information about time, memory and processor resources needed for all steps
of solution. The output file is more interesting. It contains various simulation
results. It can be loaded into Matlab or Scilab and examined.2 The following
examples are done in Matlab, everything would be very similar in Scilab.

Let us first examine the contents of the MAT file:

>> load example1.mat

>> who

Your variables are:

dyn_g_1 dyn_i_Y dyn_npred

dyn_g_2 dyn_irfm_EPS_mean dyn_nstat

dyn_g_3 dyn_irfm_EPS_var dyn_shocks

dyn_g_4 dyn_irfm_NU_mean dyn_ss

dyn_g_5 dyn_irfm_NU_var dyn_state_vars

dyn_i_A dyn_irfp_EPS_mean dyn_steady_states

dyn_i_B dyn_irfp_EPS_var dyn_vars

dyn_i_C dyn_irfp_NU_mean dyn_vcov

dyn_i_EPS dyn_irfp_NU_var dyn_vcov_exo

dyn_i_H dyn_mean

dyn_i_K dyn_nboth

dyn_i_NU dyn_nforw

All the variables coming from one MAT file have a common prefix. In this
case it is dyn, which is Dynare++ default. The prefix can be changed, so that
the multiple results could be loaded into one Matlab session.

1Under Windows it is a cmd program, under Unix it is any shell
2For Matlab load example1.mat, for Scilab mtlb load example1.mat

4

In the default setup, Dynare++ solves the Taylor approximation to the de-
cision rule and calculates unconditional mean and covariance of the endogenous
variables, and generates impulse response functions. The mean and covariance
are stored in dyn mean and dyn vcov. The ordering of the endogenous variables
is given by dyn vars.

In our example, the ordering is

>> dyn_vars

dyn_vars =

H

A

Y

C

K

B

and unconditional mean and covariance are

>> dyn_mean

dyn_mean =

0.2924

0.0019

1.0930

0.8095

11.2549

0.0011

>> dyn_vcov

dyn_vcov =

0.0003 0.0006 0.0016 0.0004 0.0060 0.0004

0.0006 0.0024 0.0059 0.0026 0.0504 0.0012

0.0016 0.0059 0.0155 0.0069 0.1438 0.0037

0.0004 0.0026 0.0069 0.0040 0.0896 0.0016

0.0060 0.0504 0.1438 0.0896 2.1209 0.0405

0.0004 0.0012 0.0037 0.0016 0.0405 0.0014

The ordering of the variables is also given by indexes starting with dyn i .
Thus the mean of capital can be retrieved as

>> dyn_mean(dyn_i_K)

ans =

11.2549

and covariance of labor and capital by

>> dyn_vcov(dyn_i_K,dyn_i_H)

ans =

0.0060

The impulse response functions are stored in matrices as follows

5

matrix response to
dyn irfp EPS mean positive impulse to EPS

dyn irfm EPS mean negative impulse to EPS

dyn irfp NU mean positive impulse to NU

dyn irfm NU mean negative impulse to NU

All shocks sizes are one standard error. Rows of the matrices correspond to
endogenous variables, columns correspond to periods. Thus capital response to
a positive shock to EPS can be plotted as

plot(dyn_irfp_EPS_mean(dyn_i_K,:));

The data is in units of the respective variables, so in order to plot the capital
response in percentage changes from the decision rule’s fix point (which is a
vector dyn ss), one has to issue the commands:

Kss=dyn_ss(dyn_i_K);

plot(100*dyn_irfp_EPS_mean(dyn_i_K,:)/Kss);

The plotted impulse response shows that the model is pretty persistent and
that the Dynare++ default for a number of simulated periods is not sufficient.
In addition, the model persistence puts in doubt also a number of simulations.
The Dynare++ defaults can be changed when calling Dynare++, in operating
system’s command prompt, we issue a command:

dynare++ --per 300 --sim 150 example1.mod

This sets the number of simulations to 150 and the number of periods to 300
for each simulation giving 45000 total simulated periods.

3 Sample Optimal Policy Session

Suppose that one wants to solve the following optimal policy problem with
timeless perspective.3 The following optimization problem is how to choose
capital taxes financing public good to maximize agent’s utility from consumption
good and public good. The problem takes the form:

max
{τt}∞t0

Et0

∞∑
t=t0

βt−t0 (u(ct) + av(gt))

subject to

u′(ct) = βEt [u′(ct+1) (1− δ + f ′(kt+1)(1− ατt+1))]

Kt = (1− δ)Kt−1 + (f(Kt−1)− ct−1 − gt−1)

gt = τtαf(Kt),

where t = . . . , t0 − 1, t0, t0 + 1, . . .

3See 5.3 on how to solve Ramsey optimality problem within this framework

6

u(ct) is utility from consuming the consumption good, v(gt) is utility from
consuming the public good, f(Kt) is a production function f(Kt) = ZtK

α
t .

Zt is a technology shock modeled as AR(1) process. The three constraints come
from the first order conditions of a representative agent. We suppose that it
pursues a different objective, namely lifetime utility involving only consumption
ct. The representative agents chooses between consumption and investment. It
rents the capital to firms and supplies constant amount of labour. All output
is paid back to consumer in form of wage and capital rent. Only the latter is
taxed. We suppose that the optimal choice has been taking place from infinite
past and will be taking place for ever. Further we suppose the same about the
constraints.

Let us choose the following functional forms:

u(ct) =
c1−ηt

1− η

v(gt) =
g1−φt

1− φ
f(Kt) = Kα

t

Then the problem can be coded into Dynare++ as follows. We start with a
preamble which states all the variables, shocks and parameters:

var C G K TAU Z;

varexo EPS;

parameters eta beta alpha delta phi a rho;

eta = 2;

beta = 0.99;

alpha = 0.3;

delta = 0.10;

phi = 2.5;

a = 0.1;

rho = 0.7;

Then we specify the planner’s objective and the discount factor in the ob-
jective. The objective is an expression (possibly including also variable leads
and lags), and the discount factor must be one single declared parameter:

planner_objective C^(1-eta)/(1-eta) + a*G^(1-phi)/(1-phi);

planner_discount beta;

The model section will contain only the constraints of the social planner.
These are capital accumulation, identity for the public product, AR(1) process
for Zt and the first order condition of the representative agent (with different
objective).

7

model;

K = (1-delta)*K(-1) + (exp(Z(-1))*K(-1)^alpha - C(-1) - G(-1));

G = TAU*alpha*K^alpha;

Z = rho*Z(-1) + EPS;

C^(-eta) = beta*C(+1)^(-eta)*(1-delta +

exp(Z(+1))*alpha*K(+1)^(alpha-1)*(1-alpha*TAU(+1)));

end;

Now we have to provide a good guess for non-linear solver calculating the
deterministic steady state. The model’s steady state has a closed form solution
if the taxes are known. So we provide a guess for taxation TAU and then use the
closed form solution for capital, public good and consumption:4

initval;

TAU = 0.70;

K = ((delta+1/beta-1)/(alpha*(1-alpha*TAU)))^(1/(alpha-1));

G = TAU*alpha*K^alpha;

C = K^alpha - delta*K - G;

Z = 0;

Finally, we have to provide the order of approximation, and the variance-
covariance matrix of the shocks (in our case we have only one shock):

order = 4;

vcov = [

0.01

];

After this model file has been run, we can load the resulting MAT-file into
the Matlab (or Scilab) and examine its contents:

>> load kp1980_2.mat

>> who

Your variables are:

dyn_g_1 dyn_i_MULT1 dyn_nforw

dyn_g_2 dyn_i_MULT2 dyn_npred

dyn_g_3 dyn_i_MULT3 dyn_nstat

dyn_g_4 dyn_i_TAU dyn_shocks

dyn_i_AUX_3_0_1 dyn_i_Z dyn_ss

dyn_i_AUX_4_0_1 dyn_irfm_EPS_mean dyn_state_vars

dyn_i_C dyn_irfm_EPS_var dyn_steady_states

dyn_i_EPS dyn_irfp_EPS_mean dyn_vars

dyn_i_G dyn_irfp_EPS_var dyn_vcov

dyn_i_K dyn_mean dyn_vcov_exo

dyn_i_MULT0 dyn_nboth

4Initial guess for Lagrange multipliers and some auxiliary variables is calculated automat-
ically. See 5.2 for more details.

8

The data dumped into the MAT-file have the same structure as in the pre-
vious example of this tutorial. The only difference is that Dynare++ added a
few more variables. Indeed:

>> dyn_vars

dyn_vars =

MULT1

G

MULT3

C

K

Z

TAU

AUX_3_0_1

AUX_4_0_1

MULT0

MULT2

Besides the five variables declared in the model (C, G, K, TAU, and Z), Dyna-
re++ added 6 more, four as Lagrange multipliers of the four constraints, two
as auxiliary variables for shifting in time. See 7.1 for more details.

The structure and the logic of the MAT-file is the same as these new 6
variables were declared in the model file and the file is examined in the same
way.

For instance, let us examine the Lagrange multiplier of the optimal policy as-
sociated with the consumption first order condition. Recall that the consumers’
objective is different from the policy objective. Therefore, the constraint will
be binding and the multiplier will be non-zero. Indeed, its deterministic steady
state, fix point and mean are as follows:

>> dyn_steady_states(dyn_i_MULT3,1)

ans =

-1.3400

>> dyn_ss(dyn_i_MULT3)

ans =

-1.3035

>> dyn_mean(dyn_i_MULT3)

ans =

-1.3422

4 What Dynare++ Calculates

Dynare++ solves first order conditions of a DSGE model in the recursive form:

Et[f(y∗∗t+1, yt, y
∗
t−1, ut)] = 0, (1)

where y is a vector of endogenous variables, and u a vector of exogenous vari-
ables. Some of elements of y can occur at time t+ 1, these are y∗∗. Elements of
y occurring at time t − 1 are denoted y∗. The exogenous shocks are supposed
to be serially independent and normally distributed ut ∼ N(0,Σ).

9

The solution of this dynamic system is a decision rule

yt = g(y∗t−1, ut)

Dynare++ calculates a Taylor approximation of this decision rule of a given
order. The approximation takes into account deterministic effects of future
volatility, so a point about which the Taylor approximation is done will be
different from the fix point y of the rule yielding y = g(y∗, 0).

The fix point of a rule corresponding to a model with Σ = 0 is called de-
terministic steady state denoted as ȳ. In contrast to deterministic steady state,
there is no consensus in literature how to call a fix point of the rule corre-
sponding to a model with non-zero Σ. I am tempted to call it stochastic steady
state, however, it might be confused with unconditional mean or with steady
distribution. So I will use a term fix point to avoid a confusion.

By default, Dynare++ solves the Taylor approximation about the determin-
istic steady state. Alternatively, Dynare++ can split the uncertainty to a few
steps and take smaller steps when calculating the fix points. This is controlled
by an option --steps. For the brief description of the second method, see 4.2.

4.1 Decision Rule Form

In case of default solution algorithm (approximation about the deterministic
steady state ȳ), Dynare++ calculates the higher order derivatives of the equi-
librium rule to get a decision rule of the following form. In Einstein notation,
it is:

yt − ȳ =

k∑
i=0

1

i!

[
g(y∗u)i

]
α1...αi

i∏
j=1

[
y∗t−1 − ȳ∗

ut

]αj
Note that the ergodic mean will be different from the deterministic steady

state ȳ and thus deviations y∗t−1 − ȳ∗ will not be zero in average. This implies
that in average we will commit larger round off errors than if we used the decision
rule expressed in deviations from a point closer to the ergodic mean. Therefore,
by default, Dynare++ recalculates this rule and expresses it in deviations from
the stochastic fix point y.

yt − y =

k∑
i=1

1

i!

[
g̃(y∗u)i

]
α1...αi

i∏
j=1

[
y∗t−1 − y∗

ut

]αj
Note that since the rule is centralized around its fix point, the first term (for
i = 0) drops out.

Also note, that this rule mathematically equivalent to the rule expressed in
deviations from the deterministic steady state, and still it is an approximation
about the deterministic steady state. The fact that it is expressed in deviations
from a different point should not be confused with the algorithm in 4.2.

This centralization can be avoided by invoking --no-centralize command
line option.

10

4.2 Taking Steps in Volatility Dimension

For models, where volatility of the exogenous shocks plays a big role, the ap-
proximation about deterministic steady state can be poor, since the equilibrium
dynamics can be very different from the dynamics in the vicinity of the perfect
foresight (deterministic steady state).

Therefore, Dynare++ has on option --steps triggering a multistep algo-
rithm. The algorithm splits the volatility to a given number of steps. Dynare++
attempts to calculate approximations about fix points corresponding to these
levels of volatility. The problem is that if we want to calculate higher order ap-
proximations about fix points corresponding to volatilities different from zero (as
in the case of deterministic steady state), then the derivatives of lower orders
depend on derivatives of higher orders with respect to forward looking vari-
ables. The multistep algorithm in each step approximates the missing higher
order derivatives with extrapolations based on the previous step.

In this way, the approximation of the stochastic fix point and the derivatives
about this fix point are obtained. It is difficult to a priori decide whether this
algorithm yields a better decision rule. Nothing is guaranteed, and the resulted
decision rule should be checked with a numerical integration. See 4.4.

4.3 Simulating the Decision Rule

After some form of a decision rule is calculated, it is simulated to obtain draws
from ergodic (unconditional) distribution of endogenous variables. The mean
and the covariance are reported. There are two ways how to calculate the mean
and the covariance. The first one is to store all simulated samples and calculate
the sample mean and covariance. The second one is to calculate mean and the
covariance in the real-time not storing the simulated sample. The latter case is
described below (see 4.3.1).

The stored simulated samples are then used for impulse response function
calculations. For each shock, the realized shocks in these simulated samples
(control simulations) are taken and an impulse is added and the new realization
of shocks is simulated. Then the control simulation is subtracted from the
simulation with the impulse. This is done for all control simulations and the
results are averaged. As the result, we get an expectation of difference between
paths with impulse and without impulse. In addition, the sample variances are
reported. They might be useful for confidence interval calculations.

For each shock, Dynare++ calculates IRF for two impulses, positive and
negative. Size of an impulse is one standard error of a respective shock.

The rest of this subsection is divided to three parts giving account on real-
time simulations, conditional simulations, and on the way how random numbers
are generated resp.

4.3.1 Simulations With Real-Time Statistics

When one needs to simulate large samples to get a good estimate of uncondi-
tional mean, simulating the decision rule with statistics calculated in real-time

11

comes handy. The main reason is that the storing of all simulated samples may
not fit into the available memory.

The real-time statistics proceed as follows: We model the ergodic distribu-
tion as having normal distribution y ∼ N(µ,Σ). Further, the parameters µ and
Σ are modelled as:

Σ ∼ InvWishartν(Λ)

µ|Σ ∼ N(µ̄,Σ/κ)

This model of p(µ,Σ) has an advantage of conjugacy, i.e. a prior distribution
has the same form as posterior. This property is used in the calculation of real-
time estimates of µ and Σ, since it suffices to maintain only the parameters of
p(µ,Σ) conditional observed draws so far. The parameters are: ν, Λ, κ, and µ̄.

The mean of µ,Σ|Y , where Y are all the draws (simulated periods) is re-
ported.

4.3.2 Conditional Distributions

Starting with version 1.3.6, Dynare++ calculates variable distributions yt con-
ditional on y0 = ȳ, where ȳ is the deterministic steady state. If triggered,
Dynare++ simulates a given number of samples with a given number of peri-
ods all starting at the deterministic steady state. Then for each time t, mean
E[yt|y0 = ȳ] and variances E[(yt−E[yt|y0 = ȳ])(yt−E[yt|y0 = ȳ])T |y0 = ȳ] are
reported.

4.3.3 Random Numbers

For generating of the pseudo random numbers, Dynare++ uses Mersenne twister
by Makoto Matsumoto and Takuji Nishimura. Because of the parallel nature
of Dynare++ simulations, each simulated sample gets its own instance of the
twister. Each such instance is seeded before the simulations are started. This
is to prevent additional randomness implied by the operating system’s thread
scheduler to interfere with the pseudo random numbers.

For seeding the individual instances of the Mersenne twister assigned to
each simulated sample the system (C library) random generator is used. These
random generators do not have usually very good properties, but we use them
only to seed the Mersenne twister instances. The user can set the initial seed of
the system random generator and in this way deterministically choose the seeds
of all instances of the Mersenne twister.

In this way, it is guaranteed that two runs of Dynare++ with the same seed
will yield the same results regardless the operating system’s scheduler. The
only difference may be caused by a different round-off errors committed when
the same set of samples are summed in the different order (due to the operating
system’s scheduler).

12

4.4 Numerical Approximation Checks

Optionally, Dynare++ can run three kinds of checks for Taylor approximation
errors. All three methods numerically calculate the residual of the DSGE equa-
tions

E[f(g∗∗(g∗(y∗, u), u′), g(y∗, u), y∗, u)|y∗, u]

which must be ideally zero for all y∗ and u. This integral is evaluated by either
product or Smolyak rule applied to one dimensional Gauss–Hermite quadrature.
The user does not need to care about the decision. An algorithm yielding higher
quadrature level and less number of evaluations less than a user given maximum
is selected.

The three methods differ only by a set of y∗ and u where the residuals are
evaluated. These are:

• The first method calculates the residuals along the shocks for fixed y∗

equal to the fix point. We let all elements of u be fixed at 0 but one
element, which varies from −µσ to µσ, where σ is a standard error of the
element and µ is the user given multiplier. In this way we can see how
the approximation error grows if the fix point is disturbed by a shock of
varying size.

• The second method calculates the residuals along a simulation path. A
random simulation is run, and at each point the residuals are reported.

• The third method calculates the errors on an ellipse of the state variables
y∗. The shocks u are always zero. The ellipse is defined as

{Ax| ‖x‖2 = µ},

where µ is a user given multiplier, and AAT = V for V being a covari-
ance of endogenous variables based on the first order approximation. The
method calculates the residuals at low discrepancy sequence of points on
the ellipse. Both the residuals and the points are reported.

5 Optimal Policy with Dynare++

Starting with version 1.3.2, Dynare++ is able to automatically generate and
then solve the first order conditions for a given objective and (possibly) forward
looking constraints. Since the constraints can be forward looking, the use of
this feature will mainly be in optimal policy or control.

The only extra thing which needs to be added to the model file is a specifica-
tion of the policy’s objective. This is done by two keywords, placed not before
parameter settings. If the objective is to maximize

Et0

∞∑
t=t0

βt−t0

[
c1−ηt

1− η
+ a

g1−φt

1− φ

]
,

then the keywords will be:

13

planner_objective C^(1-eta)/(1-eta) + a*G^(1-phi)/(1-phi);

planner_discount beta;

Dynare++ parses the file and if the two keywords are present, it automati-
cally derives the first order conditions for the problem. The first order conditions
are put to the form (1) and solved. In this case, the equations in the model

section are understood as the constraints (they might come as the first order
conditions from optimizations of other agents) and their number must be less
than the number of endogenous variables.

This section further describes how the optimal policy first order conditions
look like, then discusses some issues with the initial guess for deterministic
steady state, and finally describes how to simulate Ramsey policy within this
framework.

5.1 First Order Conditions

Mathematically, the optimization problem looks as follows:

max
{yτ}∞t

Et

[∞∑
τ=t

βτ−tb(yτ−1, yτ , yτ+1, uτ)

]
s.t. (2)

EIτ [f(yτ−1, yτ , yτ+1, uτ)] = 0 for τ = . . . , t− 1, t, t + 1, . . .

where EI is an expectation operator over an information set including, besides
all the past, all future realizations of policy’s control variables and distributions
of future shocks ut ∼ N(0,Σ). The expectation operator E integrates over an
information including only distributions of ut (besides the past).

Note that the constraints f take place at all times, and they are conditioned
at the running τ since the policy knows that the agents at time τ will use all
the information available at τ .

The maximization problem can be rewritten using Lagrange multipliers as:

max
yt

Et

[∞∑
τ=t

βτ−tb(yτ−1, yτ , yτ+1, uτ)

+

∞∑
τ=−∞

βτ−tλTτ E
I
τ [f(yτ−1, yτ , yτ+1, uτ)]

]
, (3)

where λt is a column vector of Lagrange multipliers.
After some manipulations with compounded expectations over different in-

14

formation sets, one gets the following first order conditions:

Et

 ∂

∂yt
b(yt−1, yt, yt+1, ut) + βL+1 ∂

∂yt−1
b(yt−1, yt, yt+1, ut)

+ β−1λTt−1L
−1 ∂

∂yt+1
f(yt−1, yt, yt+1, ut)

+ λTt
∂

∂yt
f(yt−1, yt, yt+1, ut)

+ βλTt+1Et+1

[
L+1 ∂

∂yt−1
f(yt−1, yt, yt+1, ut)

] = 0, (4)

where L+1 is one period lead operator, and L−1 is one period lag operator.
Dynare++ takes input corresponding to (2), introduces the Lagrange mul-

tipliers according to (3), and using its symbolic derivator it compiles (4). The
system (4) with the constraints from (3) is then solved in the same way as the
normal input (1).

5.2 Initial Guess for Deterministic Steady State

Solving deterministic steady state of non-linear dynamic systems is not trivial
and the first order conditions for optimal policy add significant complexity.
The initval section allows to input the initial guess of the non-linear solver.
It requires that all user declared endogenous variables be initialized. However,
in most cases, we have no idea what are good initial guesses for the Lagrange
multipliers.

For this reason, Dynare++ calculates an initial guess of Lagrange multipliers
using user provided initial guesses of all other endogenous variables. It uses the
linearity of the Lagrange multipliers in the (4). In its static form, (4) looks as
follows:

∂

∂yt
b(y, y, y, 0) + β

∂

∂yt−1
b(y, y, y, 0)

+ λT
[
β−1

∂

∂yt+1
f(y, y, y, 0) +

∂

∂yt
f(y, y, y, 0) + β

∂

∂yt−1
f(y, y, y, 0)

]
= 0 (5)

The user is required to provide an initial guess of all declared variables (all
y). Then (5) becomes an overdetermined linear system in λ, which is solved
by means of the least squares. The closer the initial guess of y is to the exact
solution, the closer are the Lagrange multipliers λ.

The calculated Lagrange multipliers by the least squares are not used, if they
are set in the initval section. In other words, if a multiplier has been given
a value in the initval section, then the value is used, otherwise the calculated
value is taken.

For even more difficult problems, Dynare++ generates two Matlab files cal-
culating a residual of the static system and its derivative. These can be used in

15

Matlab’s fsolve or other algorithm to get an exact solution of the deterministic
steady state. See 7.5 for more details.

Finally, Dynare++ might generate a few auxiliary variables. These are sim-
ple transformations of other variables. They are initialized automatically and
the user usually does not need to care about it.

5.3 Optimal Ramsey Policy

Dynare++ solves the optimal policy problem with timeless perspective. This
means that it assumes that the constraints in (2) are valid from the infinite past
to infinite future. Dynare++ calculation of ergodic distribution then assumes
that the policy has been taking place from infinite past.

If some constraints in (2) are forward looking, this will result in some back-
ward looking Lagrange multipliers. Such multipliers imply possibly time in-
consistent policy in the states of the “original” economy, since these backward
looking multipliers add new states to the “optimized” economy. In this respect,
the timeless perspective means that there is no fixed initial distribution of such
multipliers, instead, their ergodic distribution is taken.

In contrast, Ramsey optimal policy is started at t = 0. This means that the
first order conditions at t = 0 are different than the first order conditions at
t ≥ 1, which are (4). However, it is not difficult to assert that the first order
conditions at t = 0 are in the form of (4) if all the backward looking Lagrange
multipliers are set to zeros at period −1, i.e. λ−1 = 0.

All in all, the solution of (4) calculated by Dynare++ can be used as a
Ramsey optimal policy solution provided that all the backward looking Lagrange
multipliers were set to zeros prior to the first simulation period. This can be
done by setting the initial state of a simulation path in dynare simul.m. If this
is applied on the example from 3, then we may do the following in the command
prompt:

>> load kp1980_2.mat

>> shocks = zeros(1,100);

>> ystart = dyn_ss;

>> ystart(dyn_i_MULT3) = 0;

>> r=dynare_simul(’kp1980_2.mat’,shocks,ystart);

This will simulate the economy if the policy was introduced in the beginning
and no shocks happened.

More information on custom simulations can be obtained by typing:

help dynare_simul

6 Running Dynare++

This section deals with Dynare++ input. The first subsection 6.1 provides a list
of command line options, next subsection 6.2 deals with a format of Dynare++
model file, and the last subsection discusses incompatibilities between Dynare
Matlab and Dynare++.

16

6.1 Command Line Options

The calling syntax of the Dynare++ is

dynare++ [--help] [--version] [options] <model file>

where the model file must be given as the last token and must include its exten-
sion. The model file may include path, in this case, the path is taken relative
to the current directory. Note that the current directory can be different from
the location of dynare++ binary.

The options are as follows:

--help This prints a help message and exits.

--version This prints a version information and exits.

--per num This sets a number of simulated periods to num in
addition to the burn-in periods. This number is used when calculating
unconditional mean and covariance and for IRFs. Default is 100.

--burn num This sets a number of initial periods which should
be ignored from the statistics. The burn-in periods are used to eliminate
the influence of the starting point when calculating ergodic distributions
or/and impulse response functions. The number of simulated period given
by --per num option does not include the number of burn-in periods.
Default is 0.

--sim num This sets a number of stochastic simulations. This
number is used when calculating unconditional mean and covariance and
for IRFs. The total sample size for unconditional mean and covariance is
the number of periods times the number of successful simulations. Note
that if a simulation results in NaN or +-Inf, then it is thrown away and is
not considered for the mean nor the variance. The same is valid for IRF.
Default is 80.

--rtsim num This sets a number of stochastic simulations whose
statistics are calculated in the real-time. This number excludes the burn-
in periods set by --burn num option. See 4.3.1 for more details. Default
is 0, no simulations.

--rtper num This sets a number of simulated periods per one sim-
ulation with real-time statistics to num. See 4.3.1 for more details. Default
is 0, no simulations.

--condsim num This sets a number of stochastic conditional simula-
tions. See 4.3.2 for more details. Default is 0, no simulations.

--condper num This sets a number of simulated periods per one con-
ditional simulation. See 4.3.2 for more details. Default is 0, no simulations.

17

--steps num If the number num is greater than 0, this option
invokes a multi-step algorithm (see section 4), which in the given number
of steps calculates fix points and approximations of the decision rule for
increasing uncertainty. Default is 0, which invokes a standard algorithm
for approximation about deterministic steady state. For more details, see
4.2.

--centralize This option causes that the resulting decision rule
is centralized about (in other words: expressed in the deviations from)
the stochastic fix point. The centralized decision rule is mathematically
equivalent but has an advantage of yielding less numerical errors in average
than not centralized decision rule. By default, the rule is centralized. For
more details, see 4.1.

--no-centralize This option causes that the resulting decision rule is
not centralized about (in other words: expressed in the deviations from)
the stochastic fix point. By default, the rule is centralized. For more
details, see 4.1.

This option has no effect if the number of steps given by --steps is greater
than 0. In this case, the rule is always centralized.

--prefix string This sets a common prefix of variables in the output
MAT file. Default is dyn.

--seed num This sets an initial seed for the random generator
providing seed to generators for each sample. See 4.3.3 for more details.
Default is 934098.

--order num This sets the order of approximation and overrides
the order statement in the model file. There is no default.

--threads num This sets a number of parallel threads. Complex
evaluations of Faa Di Bruno formulas, simulations and numerical integra-
tion can be parallelized, Dynare++ exploits this advantage. You have
to have a hardware support for this, otherwise there is no gain from the
parallelization. As a rule of thumb, set the number of threads to the num-
ber of processors. An exception is a machine with Pentium 4 with Hyper
Threading (abbreviated by HT). This processor can run two threads con-
currently. The same applies to Dual-Core processors. Since these proces-
sors are present in most new PC desktops/laptops, the default is 2.

--ss-tol float This sets the tolerance of the non-linear solver of
deterministic steady state to float. It is in ‖ · ‖∞ norm, i.e. the algorithm
is considered as converged when a maximum absolute residual is less than
the tolerance. Default is 10−13.

--check pPeEsS This selects types of residual checking to be per-
formed. See section 4.4 for details. The string consisting of the letters

18

“pPeEsS” governs the selection. The upper-case letters switch a check
on, the lower-case letters off. “P” stands for checking along a simulation
path, “E” stands for checking on ellipse, and finally “S” stands for check-
ing along the shocks. It is possible to choose more than one type of check.
The default behavior is that no checking is performed.

--check-evals num This sets a maximum number of evaluations per one
residual. The actual value depends on the selected algorithm for the inte-
gral evaluation. The algorithm can be either product or Smolyak quadra-
ture and is chosen so that the actual number of evaluations would be
minimal with maximal level of quadrature. Default is 1000.

--check-num num This sets a number of checked points in a residual
check. One input value num is used for all three types of checks in the
following way:

• For checks along the simulation, the number of simulated periods is
10 · num

• For checks on ellipse, the number of points on ellipse is 10 · num
• For checks along the shocks, the number of checked points corre-

sponding to shocks from 0 to µσ (see 4.4) is num.

Default is 10.

--check-scale float This sets the scaling factor µ for checking on ellipse
to 0.5 · float and scaling factor µ for checking along shocks to float. See
section 4.4. Default is 2.0.

--no-irfs This suppresses IRF calculations. Default is to cal-
culate IRFs for all shocks.

--irfs This triggers IRF calculations. If there are no shock
names following the --irfs option, then IRFs for all shocks are calculated,
otherwise see below. Default is to calculate IRFs for all shocks.

--irfs shocklist This triggers IRF calculations only for the listed
shocks. The shocklist is a space separated list of exogenous variables for
which the IRFs will be calculated. Default is to calculate IRFs for all
shocks.

The following are a few examples:

dynare++ --sim 300 --per 50 blah.mod

dynare++ --check PE --check-num 15 --check-evals 500 blah.dyn

dynare++ --steps 5 --check S --check-scale 3 blahblah.mod

The first one sets the number of periods for IRF to 50, and sets a sample
size for unconditional mean and covariance calculations to 6000. The second
one checks the decision rule along a simulation path having 150 periods and on

19

ellipse at 150 points performing at most 500 evaluations per one residual. The
third one solves the model in five steps and checks the rule along all the shocks
from −3σ to 3σ in 2 ∗ 10 + 1 steps (10 for negative, 10 for positive and 1 for at
zero).

6.2 Dynare++ Model File

In its strictest form, Dynare++ solves the following mathematical problem:

Et[f(y∗∗t+1, yt, y
∗
t−1, ut)] = 0 (6)

This problem is input either directly, or it is an output of Dynare++ routines
calculating first order conditions of the optimal policy problem. In either case,
Dynare++ performs necessary and mathematically correct substitutions to put
the user specified problem to the (6) form, which goes to Dynare++ solver. The
following discusses a few timing issues:

• Endogenous variables can occur, starting from version 1.3.4, at times after
t+1. If so, an equation containing such occurrence is broken to non-linear
parts, and new equations and new auxiliary variables are automatically
generated only for the non-linear terms containing the occurrence. Note
that shifting such terms to time t+ 1 may add occurrences of some other
variables (involved in the terms) at times before t − 1 implying addition
of auxiliary variables to bring those variables to t− 1.

• Variables declared as shocks may occur also at arbitrary times. If before
t, additional endogenous variables are used to bring them to time t. If
after t, then similar method is used as for endogenous variables occurring
after t+ 1.

• There is no constraint on variables occurring at both times t+ 1 (or later)
and t− 1 (or earlier). Virtually, all variables can occur at arbitrary times.

• Endogenous variables can occur at times before t − 1. If so, additional
endogenous variables are added for all lags between the variable and t−1.

• Dynare++ applies the operator Et to all occurrences at time t + 1. The
realization of ut is included in the information set of Et. See an explanation
of Dynare++ timing on page 2.

The model equations are formulated in the same way as in Matlab Dynare.
The time indexes different from t are put to round parenthesis in this way:
C(-1), C, C(+1).

The mathematical expressions can use the following functions and operators:

• binary + - * / ^

• unary plus and minus minus as in a = -3; and a = +3; resp.

20

• unary mathematical functions: log exp sin cos tan sqrt, where the
logarithm has a natural base

• symbolic differentiation operator diff(expr,symbol), where expr is a
mathematical expression and symbol is a unary symbol (a variable or
a parameter); for example diff(A*K(-1)^alpha*L^(1-alpha),K(-1)) is
internally expanded as A*alpha*K(-1)^(alpha-1)*L^(1-alpha)

• unary error function and complementary error function: erf and erfc

defined as

erf(x) = 2√
π

∫ x
0
e−t

2

dt

erfc(x) = 2√
π

∫∞
x
e−t

2

dt

The model file can contain user comments. Their usage can be understood
from the following piece of the model file:

P*C^(-gamma) = // line continues until semicolon

beta*C(+1)^(-gamma)*(P(+1)+Y(+1)); // asset price

// choose dividend process: (un)comment what you want

Y/Y_SS = (Y(-1)/Y_SS)^rho*exp(EPS);

/*

Y-Y_SS = rho*(Y(-1)-Y_SS)+EPS;

*/

6.3 Incompatibilities with Matlab Dynare

This section provides a list of incompatibilities between a model file for Dy-
nare++ and Matlab Dynare. These must be considered when a model file for
Matlab Dynare is being migrated to Dynare++. The list is the following:

• There is no periods keyword.

• The parameters cannot be lagged or leaded, I think that Dynare Matlab
allows it, but the semantics is the same (parameter is a constant).

• There are no commands like steady, check, simul, stoch simul, etc.

• There are no sections like estimated params, var obs, etc.

• The variance-covariance matrix of endogenous shocks is given by vcov
matrix in Dynare++. An example follows. Starting from version 1.3.5, it
is possible for vcov to be positive semi-definite matrix.

vcov = [

0.05 0 0 0;

0 0.025 0 0;

0 0 0.05 0;

0 0 0 0.025

];

21

7 Dynare++ Output

There are three output files; a data file in MAT-4 format containing the output
data (7.2), a journal text file containing an information about the Dynare++
run (7.3), and a dump file (7.4). Further, Dynare++ generates two Matlab
script files, which calculate a residual and the first derivative of the residual
of the static system (7.5). These are useful when calculating the deterministic
steady state outside Dynare++.

Note that all output files are created in the current directory of the Dynare++
process. This can be different from the directory where the Dynare++ binary
is located and different from the directory where the model file is located.

Before all, we need to understand what variables are automatically generated
in Dynare++.

7.1 Auxiliary Variables

Besides the endogenous variables declared in var section, Dynare++ might
automatically add the following endogenous variables:

MULTn A Lagrange multiplier of the optimal policy problem associated
with a constraint number n starting from zero.

AUX n1 n2 n3 An auxiliary variable associated with the last term in equation
(4). Since the term is under Et+k, we need the auxiliary
variable be put back in time. n1 is a variable number starting
from 0 in the declared order with respect to which the term
was differentiated, n2 is a number of constraint starting from
0, and finally n3 is k (time shift of the term).

endovar pK An auxiliary variable for bringing an endogenous variable
endovar back in time by K periods. The semantics of this
variables is endovar pK = endovar(+K).

endovar mK An auxiliary variable for bringing an endogenous variable
endovar forward in time by K periods. The semantics of this
variables is endovar mK = endovar(-K).

exovar e An auxiliary endogenous variable made equal to the exogenous
variable to allow for a semantical occurrence of the exogenous
variable at time other than t. The semantics of this variables
is exovar e = exovar.

22

AUXLD n1 n2 n3 An auxiliary variable for bringing a non-linear term containing
an occurrence of a variable after t + 1 to time t + 1. n1 is an
equation number starting from 0, n2 is the non-linear sub-term
number in the equation starting from 0. n3 is a time shift.
For example, if the first equation is the following:

X - Y*W(+1) + W(+2)*Z(+4) = 0;

then it will be expanded as:

X - Y*W(+1) + AUXLD_0_2_3(+1) = 0;

AUXLD_0_2_1 = W(-1)*Z(+1);

AUXLD_0_2_2 = AUXLD_0_2_1(+1);

AUXLD_0_2_3 = AUXLD_0_2_2(+1);

7.2 MAT File

The contents of the data file is depicted below. We assume that the prefix is
dyn.

dyn nstat Scalar. A number of static variables (those
occurring only at time t).

dyn npred Scalar. A number of variables occurring at time
t− 1 and not at t+ 1.

dyn nboth Scalar. A number of variables occurring at t+ 1
and t− 1.

dyn nforw Scalar. A number of variables occurring at t+ 1
and not at t− 1.

dyn vars Column vector of endogenous variable names in
Dynare++ internal ordering.

dyn i endovar Scalar. Index of a variable named endovar in the
dyn vars.

dyn shocks Column vector of exogenous variable names.

dyn i exovar Scalar. Index of a shock named exovar in the
dyn shocks.

dyn state vars Column vector of state variables, these are
stacked variables counted by dyn npred, dyn -

nboth and shocks.

dyn vcov exo Matrix nexo × nexo. The variance-covariance
matrix of exogenous shocks as input in the model
file. The ordering is given by dyn shocks.

23

dyn mean Column vector nendo × 1. The unconditional
mean of endogenous variables. The ordering is
given by dyn vars.

dyn vcov Matrix nendo × nendo. The unconditional co-
variance of endogenous variables. The ordering
is given by dyn vars.

dyn rt mean Column vector nendo × 1. The unconditional
mean of endogenous variables estimated in
real-time. See 4.3.1. The ordering is given
by dyn vars.

dyn rt vcov Matrix nendo × nendo. The unconditional co-
variance of endogenous variables estimated in
real-time. See 4.3.1. The ordering is given by
dyn vars.

dyn cond mean Matrix nendo × nper. The rows correspond to
endogenous variables in the ordering of dyn vars,
the columns to periods. If t is a period (starting
with 1), then t-th column is E[yt|y0 = ȳ]. See
4.3.2.

dyn cond variance Matrix nendo × nper. The rows correspond to
endogenous variables in the ordering of dyn vars,
the columns to periods. If t is a period (starting
with 1), then t-th column are the variances of
yt|y0 = ȳ. See 4.3.2.

dyn ss Column vector nendo × 1. The fix point of the
resulting approximation of the decision rule.

dyn g order Matrix nendo×?. A derivative of the decision rule
of the order multiplied by 1/order!. The rows cor-
respond to endogenous variables in the ordering of
dyn vars. The columns correspond to a multidi-
mensional index going through dyn state vars.
The data is folded (all symmetrical derivatives
are stored only once).

dyn steady states Matrix nendo × nsteps + 1. A list of fix points
at which the multi-step algorithm calculated
approximations. The rows correspond to en-
dogenous variables and are ordered by dyn vars,
the columns correspond to the steps. The first
column is always the deterministic steady state.

24

dyn irfp exovar mean Matrix nendo× nper. Positive impulse response
to a shock named exovar. The row ordering is
given by dyn vars. The columns correspond to
periods.

dyn irfp exovar var Matrix nendo × nper. The variances of positive
impulse response functions.

dyn irfm exovar mean Same as dyn irfp exovar mean but for negative
impulse.

dyn irfp exovar var Same as dyn irfp exovar var but for negative
impulse.

dyn simul points A simulation path along which the check was
done. Rows correspond to endogenous variables,
columns to periods. Appears only if --check P.

dyn simul errors Errors along dyn simul points. The rows corre-
spond to equations as stated in the model file, the
columns to the periods. Appears only if --check
P

dyn ellipse points A set of points on the ellipse at which the ap-
proximation was checked. Rows correspond to
state endogenous variables (the upper part of
dyn state vars, this means without shocks),
and columns correspond to periods. Appears
only if --check E.

dyn ellipse errors Errors on the ellipse points dyn ellipse points.
The rows correspond to the equations as stated
in the model file, columns to periods. Appears
only if --check E.

dyn shock exovar errors Errors along a shock named exovar. The rows
correspond to the equations as stated in the
model file. There are 2m+1 columns, the middle
column is the error at zero shock. The columns
to the left correspond to negative values, columns
to the right to positive. Appears only if --check
S.

7.3 Journal File

The journal file provides information on resources usage during the run and
gives some informative messages. The journal file is a text file, it is organized
in single line records. The format of records is documented in a header of the
journal file.

The journal file should be consulted in the following circumstances:

25

• Something goes wrong. For example, if a model is not Blanchard–Kahn
stable, then the eigenvalues are dumped to the journal file.

If the unconditional covariance matrix dyn vcov is NaN, then from the
journal file you will know that all the simulations had to be thrown away
due to occurrence of NaN or Inf. This is caused by non-stationarity of the
resulting decision rule.

If Dynare++ crashes, the journal file can be helpful for guessing a point
where it crashed.

• You are impatient. You might be looking at the journal file during the run
in order to have a better estimate about the time when the calculations
are finished. In Unix, I use a command tail -f blah.jnl.5

• Heavy swapping. If the physical memory is not sufficient, an operating
system starts swapping memory pages with a disk. If this is the case, the
journal file can be consulted for information on memory consumption and
swapping activity.

• Not sure what Dynare++ is doing. If so, read the journal file, which
contains a detailed record on what was calculated, simulated etc.

7.4 Dump File

The dump file is always created with the suffix .dump. It is a text file which
takes a form of a model file. It sets the parameter values which were used, it
has the initval section setting the values which were finally used, and mainly it
has a model section of all equations with all substitutions and formed the first
order conditions of the planner.

The dump file serves for debugging purposes, since it contains the mathe-
matical problem which is being solved by dynare++.

7.5 Matlab Scripts for Steady State Calculations

This section describes two Matlab scripts, which are useful when calculating
the deterministic steady state outside Dynare++. The scripts are created by
Dynare++ as soon as an input file is parsed, that is before any calculations.

The first Matlab script having a name modname f.m for given parameters
values and given all endogenous variables y calculates a residual of the static
system. Supposing the model is in the form of (1), the script calculates a vector:

f(y, y, y, 0)

The second script having a name modname ff.m calculates a matrix:

∂

∂y
f(y, y, y, 0)

5This helps to develop one of the three programmer’s virtues: impatience. The other two
are laziness and hubris; according to Larry Wall.

26

Both scripts take two arguments. The first is a vector of parameter values
ordered in the same ordering as declared in the model file. The second is a
vector of all endogenous variables at which the evaluation is performed. These
endogenous variables also include auxiliary variables automatically added by
Dynare++ and Lagrange multipliers if an optimal policy problem is solved. If
no endogenous variable has not been added by Dynare++, then the ordering is
the same as the ordering in declaration in the model file. If some endogenous
variables have been added, then the ordering can be read from comments close
to the top of either two files.

For example, if we want to calculate the deterministic steady state of the
kp1980.dyn model, we need to do the following:

1. Run Dynare++ with kp1980.dyn, no matter if the calculation has not
been finished, important output are the two Matlab scripts created just
in the beginning.

2. Consult file kp1980 f.m to get the ordering of parameters and all endoge-
nous variables.

3. Create a vector p with the parameter values in the ordering

4. Create a vector init y with the initial guess for the Matlab solver fsolve

5. Create a simple Matlab function called kp1980 fsolve.m returning the
residual and Jacobian:

function [r, J] = kp1980_fsolve(p, y)

r = kp1980_f(p, y);

J = kp1980_ff(p, y);

6. In the Matlab prompt, run the following:

opt=optimset(’Jacobian’,’on’,’Display’,’iter’);

y=fsolve(@(y) kp1980_fsolve(p,y), init_y, opt);

7.6 Custom Simulations

When Dynare++ run is finished it dumps the derivatives of the calculated
decision rule to the MAT file. The derivatives can be used for a construc-
tion of the decision rule and custom simulations can be run. This is done by
dynare simul.m M-file in Matlab. It reads the derivatives and simulates the
decision rule with provided realization of shocks.

All the necessary documentation can be viewed by the command:

help dynare_simul

27

	Setup
	Sample Session
	Sample Optimal Policy Session
	What Dynare++ Calculates
	Decision Rule Form
	Taking Steps in Volatility Dimension
	Simulating the Decision Rule
	Simulations With Real-Time Statistics
	Conditional Distributions
	Random Numbers

	Numerical Approximation Checks

	Optimal Policy with Dynare++
	First Order Conditions
	Initial Guess for Deterministic Steady State
	Optimal Ramsey Policy

	Running Dynare++
	Command Line Options
	Dynare++ Model File
	Incompatibilities with Matlab Dynare

	Dynare++ Output
	Auxiliary Variables
	MAT File
	Journal File
	Dump File
	Matlab Scripts for Steady State Calculations
	Custom Simulations

