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Abstract

Local (perturbation) methods compute solutions in one point and tend to deliver far
lower accuracy levels than global solution methods. In the present paper, we develop a
hybrid method that solves for some policy functions locally (using a standard perturbation
method) and that solves for the other policy functions globally to satisfy certain nonlinear
optimality conditions (using closed-form expressions and a numerical solver). We applied
the hybrid method to solve large-scale RBC models used in the comparison analysis of
Kollmann et al. (2011b). We obtained more accurate solutions than those produced by any
other (either local or global) solution method participating in that comparison.
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1 Introduction

Local (perturbation) methods compute solutions in just one point—a deterministic steady
state—using Taylor expansions of optimality conditions.1 The advantage of perturbation meth-
ods is their low computational expense. The shortcoming is that the accuracy of local solutions
may decrease rapidly away from the steady state; see Judd and Guu (1993), and Kollmann
et al. (2011b) for accuracy results in one-agent and multi-agent economies, respectively.2 In
turn, global methods (such as projection and stochastic simulation ones) compute solutions on
larger domains, and the range of their accuracy is much wider; see Judd (1992) and Kollmann
et al. (2011b) for accuracy results in one-agent and multi-agent economies, respectively.3 How-

∗Lilia Maliar and Serguei Maliar acknowledge support from the Hoover Institution at Stanford University, the
Ministerio de Ciencia e Innovación de España and FEDER funds under the project SEJ-2007-62656, the Ivie,
and the Generalitat Valenciana under the grants BEST/2011/283 and BEST/2011/282, respectively. We thank
Stéphane Adjemian, Michel Juillard, Kenneth L. Judd and an anonymous referee for useful comments.
†Hoover Institution at Stanford University and University of Alicante (maliarl@stanford.edu).
‡Hoover Institution at Stanford University and University of Alicante (maliars@stanford.edu).
§Paris School of Economics and CEPREMAP (sebastien@dynare.org)
1Perturbation methods are studied in Judd and Guu (1993), Gaspar and Judd (1997), Judd (1998), Collard

and Juillard (2001), Jin and Judd (2002), Schmitt-Grohé and Uŕıbe (2004), Aruoba et al. (2006), Swanson et al.
(2006), Chen and Zadrozny (2009) and Gomme and Klein (2011) among others.

2In particular, the first- and second-order perturbation methods of Kollmann et al. (2011a) produce maximum
approximation errors of 6.3% and 1.35% on a stochastic simulation, and they produce maximum errors of 65%
and 50% on a 30% deviation from the steady state; see Kollmann et al. (2011b).

3In the accuracy comparison of Kollmann et al. (2011b), global quadratic solutions are up to three orders of
magnitude more accurate than local quadratic solutions.
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ever, the cost of global solution methods is high and increases rapidly with the dimensionality
of the state space.4

The present paper makes three contributions to the literature. First, we develop a perturbation-
based solution method that combines local and global approximation techniques. Our hybrid
method is as follows: compute the standard perturbation solution, fix some perturbation pol-
icy functions (these functions constitute the first part of the hybrid solution) and compute the
remaining policy functions to satisfy certain nonlinear optimality conditions (the resulting func-
tions constitute the second part of the hybrid solution). The construction of the second part of
the hybrid solution mimics global solution methods: for each point of the state space consid-
ered, we solve nonlinear equations either analytically (when closed-form solutions are available)
or with a numerical solver. If the perturbation policy functions, used to construct a hybrid
solution, are accurate, then the entire hybrid solution inherits their high accuracy and can be
far more accurate than the original perturbation solution. The cost of the proposed hybrid
method is essentially the same as that of the standard perturbation method.

Second, we show how to apply the proposed hybrid method for solving dynamic economic
models. Our numerical analysis is carried out in the context of a multi-country RBC model used
in Kollmann et al. (2011b) to compare the performance of six state-of-art solution methods.5

This model represents various challenges to numerical methods, including a large number of
state variables, endogenous labor-leisure choice, heterogeneity in fundamentals and absence of
closed-form expressions for endogenous variables. Our implementation of the hybrid method
relies on Dynare perturbation software. We compute perturbation solutions up to the third
order, we fix capital policy functions for all countries, we simulate the economy path for the
state variables (capital stocks and productivity levels), and we fill-in the consumption and labor
allocations of all countries by solving a system of intratemporal optimality conditions (we use
a fixed-point “iteration-on-allocations” solver introduced in Maliar et al. (2011)). Our hybrid
method proved to be both accurate and reliable in the application considered.

Finally, we extend the accuracy frontier attained in the related literature. Namely, our simple
and low-cost hybrid method produces solutions that are more accurate than those produced by
any other (either local or global) solution method participating in the comparison analysis of
Kollmann et al. (2011b). In particular, the maximum error produced by our hybrid method on
a stochastic simulation in an eight-country version of the model does not exceed 0.001%, which
is about three times smaller than the corresponding error produced by a cluster grid algorithm
(CGA) of Maliar et al. (2011) (most accurate on a stochastic simulation). The running time
for our hybrid method in large-scale applications is orders of magnitude lower than that of
global solution methods considered in Kollmann et al. (2011b). It takes us just 1.32 seconds to
compute the most accurate third-order solution for the eight-country version of the model.

The rest of the paper is organized as follows. Section 2 introduces the idea of hybrid method
in the context of a simple example. Section 3 provides a formal description of the hybrid method
that combines local (perturbation) and global solutions. Section 4 assesses the performance of
the hybrid method using a large-scale RBC model studied in Kollmann et al. (2011b). Section
5 concludes.

4For example, for a model with 16 state variables and valued leisure, the running time for finding quadratic
solutions ranges from 40 minutes to nearly 8 hours for the global methods studied in Kollmann et al. (2011b).
None of the methods participating in the comparison analysis of Kollmann et al. (2011b) went beyond quadratic
solutions when analyzing large-scale versions of the model.

5The six methods participating in the comparison analysis are: first- and second-order perturbation methods
of Kollmann et al. (2011a), stochastic simulation and cluster-grid algorithms of Maliar et al. (2011), Smolyak’s
collocation method of Malin et al. (2011), and a monomial rule Galerkin method of Pichler (2011). The latter three
methods are projection methods. See Juillard and Villemot (2011) for a description of the accuracy evaluation
performed.
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2 Hybrid solutions: a motivating example

In this section, we expose the idea of the hybrid method in the context of a simple example—the
standard one-sector neoclassical growth model.

The model. A representative agent solves

max
{kt+1,ct}∞t=0

E0

∞∑
t=0

βtu (ct) (1)

s. t. ct + kt+1 = (1− δ) kt + atf (kt) , (2)

ln at+1 = ρ ln at + εt+1, εt ∼ N
(
0, σ2

)
, (3)

where ct, kt and at are, respectively, consumption, capital and productivity level at period t; u
and f are, respectively, the utility and production functions, which are assumed to be increasing
and concave; δ ∈ (0, 1] is the depreciation rate; β ∈ (0, 1) is the discount factor; ρ ∈ (0, 1) and
σ ≥ 0 are the auto-correlation coefficient and standard deviation of the productivity level,
respectively; initial condition (k0, a0) is given. The Euler equation of problem (1)–(3) is

u′ (ct) = βEt
{
u′ (ct+1)

[
1− δ + at+1f

′ (kt+1)
]}
. (4)

A solution to problem (1)–(3) is given by policy functions for capital kt+1 = K (kt, at) and
consumption ct = C (kt, at) satisfying (4) and (2).

Benchmark solution. Assume that a numerical method delivers an approximate solution
in the form of two policy functions K̂ ≈ K and Ĉ ≈ C. Assume that this solution is not
sufficiently accurate for some purposes.

Hybrid method. We attempt to improve on accuracy of the benchmark solution in the
following way. We fix one policy function from the benchmark solution, for example, K̂, and we

solve for the other policy function, C̃ ≡ C̃
(
K̂
)

, to satisfy the nonlinear optimality conditions

taking K̂ as given. If the resulting new policy function is different from the benchmark one,
i.e., C̃ 6= Ĉ, we have a hybrid solution.

Four hybrid solutions for our model. For the model (1)–(3), we have two optimality
conditions, namely, budget constraint (2) and Euler equation (4). By considering all possible
combinations of the two policy functions and the two optimality conditions, we construct four

hybrid solutions
{
K̂, C̃BC

}
,
{
K̂, C̃EE

}
,
{
Ĉ, K̃BC

}
and

{
Ĉ, K̃EE

}
as follows:

HYB1: Fix K̂ and define C̃BC using (2),

C̃BC (kt, at) ≡ (1− δ) kt + atf (kt)− K̂ (kt, at) .

HYB2: Fix K̂ and define C̃EE using (4),

u′
(
C̃EE (kt, at)

)
= βEt

{
u′
[
C̃EE

(
K̂ (kt, at) , at+1

)] [
1− δ + at+1f

′
(
K̂ (kt, at)

)]}
.

HYB3: Fix Ĉ and define K̃BC using (2),

K̃BC (kt, at) ≡ (1− δ) kt + atf (kt)− Ĉ (kt, at) .

HYB4: Fix Ĉ and define K̃EE using (4),

u′
(
Ĉ (kt, at)

)
= βEt

{
u′
(
Ĉ
(
K̃EE (kt, at) , at+1

)) [
1− δ + at+1f

′
(
K̃EE (kt, at)

)]}
.
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Discussion. On the basis of our example, we make the following observations:

1. Multiple hybrid solutions can be constructed for a given benchmark solution; in our ex-
ample, there are 4 hybrid solutions.

2. The hybrid method mimics global solution methods in the sense that functions C̃BC , C̃EE ,
K̃BC and K̃EE are defined to satisfy the corresponding nonlinear optimality condition
globally, for any point (kt, at) of the state space considered.

3. A hybrid solution can be either more or less accurate than the benchmark solution. As-
sume that in the benchmark solution, K̂ is accurate and Ĉ is not. Then, the hybrid
solutions based on K̂ (i.e., HYB1 and HYB2) will be more accurate, while the hybrid
solutions based on Ĉ (i.e., HYB3 and HYB4) will be less accurate than the benchmark
solution.

4. Hybrid solutions can differ in cost considerably. In our example, HYB1 and HYB3 are ob-
tained using simple closed-form expressions, while HYB2 and HYB4 are defined implicitly
and are far more costly to compute.

5. Hybrid solutions can be trivial for some benchmark solutions. For example, if the policy
functions K̂ and Ĉ were computed by imposing budget constraint (2) exactly (as do global
solution methods), then HYB1 and HYB3 will be identical to the benchmark solution.

We will not perform the numerical analysis of equilibrium in our simple model since this
model can be solved both accurately and quickly by many existing solution methods. In Section
4, we will solve a challenging large-scale version of the present model.

3 Hybrid of perturbation and global solutions

The hybrid technique can potentially be used to increase accuracy of any solution method. That
is, whenever some policy functions are approximated less accurately than others, we can keep the
accurate policy functions and recompute the inaccurate ones. However, it is of particular interest
to construct hybrid solutions for the perturbation class of methods. Perturbation methods are
very cheap but their accuracy is limited. Therefore, the goal is to increase the accuracy of
perturbation methods without increasing their cost.6 In the remainder of the paper, we confine
our attention to hybrids of perturbation and global solutions. Below, we outline the studied
class of problems, elaborate a hybrid method that combines local and global solutions, discuss
the properties of the hybrid solutions and describe the relation of our hybrid method to the
literature.

3.1 The studied class of problems

We study a class of problems, whose solutions are characterized by the following set of equations
for t = 0, 1, . . .

Et
[
H
(
xt, zt,yt,xt+1, zt+1,yt+1

)]
= 0, (5)

G (xt, zt,yt,xt+1) = 0, (6)

zt+1 = Φzt + εt+1, (7)

6Global solution methods can also benefit from the hybrid technique; see Maliar et al. (2011) for examples.
However, the cost of hybrid solutions constructed using global solutions will be at least as high as that of the
global solutions used for their construction.
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where initial condition (x0, z0) is given; Et denotes the operator of conditional expectation;
xt ∈ Rnx is a vector of endogenous state variables at t (e.g., capital); zt ∈ Rnz is a vector of
exogenous state (random) variables at t (e.g., productivity); yt ∈ Rny is a vector that contains
t-period control variables (e.g., consumption, labor) and other variables (e.g., prices, Lagrange
multipliers) given by functions of variables known at t; with a slight abuse of terminology,
we refer to yt as control variables; 0 denotes a column-vector of zeros; H and G are vector
functions that are assumed to be q-times continuously differentiable; εt+1 ∈ Rnz is a vector of
disturbances, εt+1 ∼ N (0,Σ) with Σ ∈ Rnz×nz being a variance-covariance matrix; Φ ∈ Rnz×nz

determines the auto-correlation of zt and has eigenvalues whose absolute values are less than
one.7

Equations of type (5) include variables not known at t, zt+1 and yt+1, and require the
evaluation of conditional expectations. We refer to these nH equations as inter-temporal-choice
conditions. Equations of type (6) contain only variables known at t. We refer to these nG
equations as intra-temporal-choice conditions.8 Finally, equations of type (7) are laws of motion
for exogenous state variables; there are nz such equations.

A deterministic steady state is defined as a set of values for the endogenous variables,
xt = xt+1 = x and yt = yt+1 = y, that solves equations (5) and (6) in the absence of exogenous
shocks (i.e., zt = zt+1 = 0, H (x,0,y,x,0,y) = 0 and G (x,0,y,x) = 0). Let et ≡ {xt+1,yt}
be the vector of all endogenous variables whose value is determined at t (namely, current-period
control and next-period state variables). A solution is defined as a set of policy functions for
endogenous variables et = Ψ (xt, zt) that satisfy the optimality conditions (5) and (6) in the
relevant region of the state space. Note that the total number of policy functions, n ≡ nx +ny,
is equal to the total number of equations in the system (5) and (6), that is nH +nG. We assume
that functions H and G satisfy jointly a set of regularity conditions that are sufficient to ensure
that a steady state exists and is unique and that a solution exists and is unique.

3.2 Construction of hybrid solutions

We develop a method that solves for some policy functions locally (using standard perturbation)
and solves for the other policy functions globally (using closed-form expressions and a numerical
solver). The method is as follows:

• Step 1. Compute a standard perturbation solution Ψ̂ and partition n policy functions

into two parts, Ψ̂ ≡
{

Ψ̂1, Ψ̂2

}
. The perturbation policy functions Ψ̂1 will be used for

constructing a hybrid solution (let n1 be the total number of such policy functions, 0 ≤
n1 ≤ n). The remaining perturbation policy functions Ψ̂2 will be replaced with a global
solution (the number of such policy functions is n2 ≡ n− n1).

• Step 2. Partition the system of n equations (5) and (6) into two sub-systems with n1 and
n2 equations. We assume that the second sub-system with n2 equations is non-degenerate
and identifies n2 policy functions Ψ2 uniquely if Ψ1 is given.

• Step 3. Given the perturbation policy functions Ψ̂1 chosen in Step 1, solve (either analyt-

ically or using a numerical solver) for n2 policy functions Ψ̃2 = Ψ2

(
Ψ̂1

)
that satisfy n2

equations chosen in Step 2 for all (xt, zt).

The hybrid solution is Ψ̃ ≡
{

Ψ̂1, Ψ̃2

}
.

7Alternatively, xt and zt can be called, respectively, endogenous and exogenous predetermined variables at
the beginning of period t, and yt can be called endogenous non-predetermined variables.

8Note that xt+1 is t-measurable and therefore, there is no conditional expectation in equations of type (6).
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3.3 Properties of hybrid solutions

The properties of hybrid solutions documented for the example in Section 3 carry over to the
general case. First, there are multiple hybrid solutions. Namely, in Step 1, there are many
ways of choosing how many and which perturbation policy functions to keep, and in Step 2,
there are many ways of choosing optimality conditions that identify the remaining policy func-
tions. In particular, two obvious limiting cases of the hybrid method are to keep the original
perturbation solution unchanged (n1 = n) and to re-compute the perturbation solution entirely
(n1 = 0).Furthermore, to keep the cost of hybrid solutions low, we must choose those optimality
conditions for identifying Ψ̃2 that are the least expensive to solve (typically, it is easier to solve
equations of type (6) than equations of type (5) as the former type does not require the evalu-
ation of conditional expectations). Finally, to make hybrid solutions accurate, we must collect
into Ψ̂1 those policy functions that are computed most accurately by the standard perturbation
method (small (large) errors in Ψ̂1 induce small (large) errors in the hybrid solution).

3.4 Comparison to the literature

Our general presentation of the hybrid method encompasses some previous examples in the
literature. First, Dotsey and Mao (1992) compare the performance of a standard linearization
method with a method that uses a linearized policy function for capital and labor and solves
for consumption and investment allocations analytically from the optimality conditions. In the
context of a RBC model with labor and production taxes, none of the two methods strictly
dominates the other: the former method produces more accurate policy functions for consump-
tion and real interest rates while the latter method produces more accurate policy functions for
investment.

Furthermore, Maliar et al. (2011) extend the hybrid method to include those cases in which
optimality conditions do not admit closed-form solutions. They combine a linearized policy
functions (used to find capital) with a fixed-point “iteration-on-allocation” numerical solver
(used to solve for consumption and labor allocations). In the context of a multi-country RBC
model, this modification of the standard linearization method leads to a considerable accuracy
improvement. Maliar et al. (2011) also show that the hybrid approach can be also used to
improve the performance of global solution methods whose policy functions are not sufficiently
accurate.

Finally, pruning methods are another type of perturbation-based methods in the literature
that can be classified as hybrid methods. Such methods try to address another potential short-
coming of the standard perturbation methods, namely, their numerical instability in simulation.
The term “pruning” was introduced by Kim et al. (2008) who showed that a simulation of high-
order perturbation solutions may produce explosive time series. To restore the numerical stabil-
ity, they propose to replace cross-products of variables in the second-order perturbation solution
with cross-products of variables obtained from the first-order perturbation solution. Other pa-
pers that focus on stabilizing perturbation methods are Lombardo (2010), and Den Haan and
De Wind (forthcoming). In particular, the latter paper uses a fixed-point iteration technique
that is similar in spirit to “iteration-on-allocation” solver used for constructing hybrid solutions
in the next section of the present paper.

4 Hybrid solutions for a large-scale RBC model

A special 2011’s issue of the Journal of Economic Dynamic and Control compares the perfor-
mance of six state-of-art numerical methods using a collection of multi-country RBC models;
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see Kollmann et al. (2011b) for the comparison results. We assess the performance of the hybrid
method in the context of a multi-country model used in the above comparison analysis.

4.1 The model

In the description of the model, we follow Juillard and Villemot (2011). The world economy
consists of a finite number of countries N , and each country is populated by a representa-
tive consumer. A social planner maximizes a weighted sum of expected lifetime utility of the
countries’ representative consumers

max
{cjt ,`jt ,ijt ,kjt+1}

j=1,...,N

t=0,...,∞

E0

N∑
j=1

τ j

( ∞∑
t=0

βtuj
(
cjt , `

j
t

))
(8)

subject to the world resource constraint,

N∑
j=1

(
cjt + ijt − δkit

)
=

N∑
j=1

ajtf j (kjt , `jt)− φ

2
kjt

(
ijt

kjt
− δ

)2
 , (9)

and to the capital-accumulation equations for j = 1, . . . , N ,

kjt+1 = (1− δ) kjt + ijt , (10)

where cjt , `
j
t , i

j
t , k

j
t , a

j
t , u

j , f j and τ j are, respectively, consumption, labor, investment, capital,
productivity level, utility function, net production function and welfare weight of a country
j = 1, . . . , N ; φ is the adjustment-cost parameter. Initial condition (k0,a0) is given, where
kt ≡

(
k1
t , . . . , k

N
t

)
and at ≡

(
a1
t , . . . , a

N
t

)
. The process for the productivity level in country j is

given by
ln ajt = ρ ln ajt−1 + σεjt , (11)

where εjt ≡ et + ejt with et and ejt being common and country-specific productivity shocks,
respectively, and et, e

j
t ∼ N (0, 1); ρ is the auto-correlation coefficient of the productivity level;

and σ determines the standard deviation of the productivity level.
An interior solution to the social planner’s problem (8)–(11) satisfies the following optimality

conditions for countries j = 1, . . . , N

τ jujc

(
cjt , `

j
t

)
= λt, (12)

τ juj`

(
cjt , `

j
t

)
= −λtajtf

j
`

(
kjt , `

j
t

)
, (13)

λt

[
1 + φ

(
ijt

kjt
− δ

)]
= βEt

{
λt+1

[
1 + ajt+1f

j
k

(
kjt+1, `

j
t+1

)
+

φ

(
1− δ +

ijt+1

kjt+1

− 1

2

(
ijt+1

kjt+1

− δ

))(
ijt+1

kjt+1

− δ

)]}
, (14)

where λt is the Lagrange multiplier associated with world resource constraint (9). Here, and
for the remainder of the paper, notation of type Fχm stands for the first-order partial derivative
of a function F (. . . , χm, . . .) with respect to a variable χm. In addition, the social planner’s
solution satisfies the set of transversality conditions lim

t→∞
λtk

j
t+1 = 0 for j = 1, . . . , N .
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4.2 A specific hybrid solution

To solve the model (8)–(11), we construct a specific hybrid solution (in terms of our example
of section 2, this hybrid solution corresponds to HYB1).

• The original perturbation solution consists of 4N + 1 policy functions kjt+1 = K̂j (kt,at),

cjt = Ĉj (kt,at), `
j
t = L̂j (kt,at) and ijt = Îj (kt,at), j = 1, . . . , N and λt = Λ̂ (kt,at)

computed using the 4N + 1 optimality conditions (9), (10), (12)–(14).

• To construct the hybrid solution, we take N perturbation policy functions for the next-
period capital kjt+1 = K̂j (kt,at) and compute the remaining 3N + 1 policy functions

cjt = C̃j (kt,at), `
j
t = L̃j (kt,at), i

j
t = Ĩj (kt,at), j = 1, . . . , N and λt = Λ̃ (kt,at)

to satisfy the intra-temporal-choice conditions (9), (10), (12) and (13) (thus, N Euler
equations (14) are not used for constructing this specific hybrid solution).

The above construction is motivated by the following accuracy and cost considerations in
the context of the given model. First, Maliar et al. (2011) show that one must approximate
more accurately the consumption and labor policy functions than the capital policy functions
to attain a target accuracy level. Second, Kollmann et al. (2011b) report that the pertur-
bation methods produce smaller errors in inter-temporal-choice conditions (Euler equations)
(14) than in the intra-temporal-choice conditions (9), (10), (12) and (13). Third, Maliar et al.
(2011) argue that fixing the capital policy functions helps save on cost because one can first
simulate the path for the state variables {kt+1,at}t=1,...,T without solving for the remaining
variables {ct, `t, it, λt}t=1,...,T at each date and later fill in such remaining variables, where

ct ≡
(
c1
t , . . . , c

N
t

)
, `t ≡

(
`1t , . . . , `

N
t

)
, it ≡

(
i1t , . . . , i

N
t

)
. Finally, disregarding Euler equations

(14) helps save on cost because it allows us to avoid expensive multi-dimensional integration.

An example with a closed-form solution for control variables. We illustrate the con-
struction of the hybrid solution using a version of the model (8)–(11) in which control variables
can be characterized analytically in terms of state variables. We specifically assume that leisure
is non-valued and that the utility function is logarithmic, i.e., uj(cjt , `

j
t ) = ln cjt . This setup

corresponds to Model I in Juillard and Villemot (2011).
We take the capital policy functions kjt+1 = K̂j (kt,at), j = 1, . . . , N delivered by the

standard perturbation method and compute the remaining policy functions to satisfy (9), (10)
and (12). To be specific, we first find the investment policy function Ĩjt (kt,at) = ijt , j =
1, . . . , N ,

ijt = K̂j (kt,at)− (1− δ) kjt . (15)

Given Ĩjt (kt,at), we compute aggregate consumption ct ≡
∑N

j=1 c
j
t ,

ct =

N∑
j=1

ajtf j (kjt , 1)− φ

2
kjt

(
Ĩjt (kt,at)

kjt
− δ

)2

− Ĩjt (kt,at) + δkjt

 . (16)

Condition (12) implies τ j

cjt
= λt, and hence aggregate consumption is ct =

∑N
j=1

τ j

λt
. The latter

condition implies the policy function for the Lagrange multiplier, Λ̃ (kt,at) = λt,

λt =
1

ct

N∑
j=1

τ j . (17)
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Finally, the policy functions for individual consumption, C̃jt (kt,at) = cjt , j = 1, . . . , N , are

cjt =
τ j∑N
j=1 τ

j
ct. (18)

By construction, policy functions C̃jt (kt,at), Ĩ
j
t (kt,at), j = 1, . . . , N and λt = Λ̃ (kt,at) satisfy

optimality conditions (9), (10) and (12) exactly (i.e., approximation errors in these conditions
are zeros).9

Solving for control variables numerically. In general, the system of intra-temporal-choice
conditions (9), (10), (12) and (13) does not admit a closed-form solution. To construct the policy
functions for the control variables numerically, we can use a standard Newton-type numerical
solver, though the cost of such a solver can be prohibitively high, especially in large-scale
applications. Maliar et al. (2011) develop two alternative methods that are tractable in the given
context even if the dimensionality of the problem is high: one is a derivative-free “iteration-on-
allocation” numerical solver, and the other is a method of precomputing the intra-temporal-
choice functions outside the main iterative cycle.

4.3 Numerical experiments

We apply our hybrid method to solve one of the RBC models studied in the comparison analysis
of Kollmann et al. (2011b), namely, Model II with an asymmetric specification. We chose this
model because it represents all challenges posed in the comparison analysis: a large number of
state variables, endogenous labor-leisure choice, heterogeneity in fundamentals and the absence
of closed-form expressions for next-period state and control variables.10

4.3.1 Implementation details

In this section, we describe the parametrization of the model, the solution procedure, the
accuracy tests implemented and the software and hardware used.

Parametrization of the model. The utility and production functions are given by

uj
(
cjt , `

j
t

)
=

(
cjt

)1−1/γj

1− 1/γj
− bj

(
cjt

)1+1/ηj

1 + 1/ηj
, f j

(
kjt , `

j
t

)
= A

(
kjt

)α (
`jt

)1−α
,

where
{
γj , bj , η

j
}

are the utility-function parameters, α is the capital share in production, and
A is the normalizing constant in output. To make our results comparable to Kollmann et al.
(2011b), we calibrate the model as is done in Juillard and Villemot (2011). We use the following
values of common-for-all-countries parameters: α = 0.36, β = 0.99, δ = 0.025, σ = 0.01,
ρ = 0.95, φ = 0.5, and we assume that the country-specific utility-function parameters γj and
ηj are uniformly distributed in the intervals [0.25, 1] and [0.1, 1] across countries j = 1, . . . , N ,
respectively. The steady state level for productivity is normalized to one, aj = 1. We also

normalize the steady state levels of capital and labor to one, k
j

= 1, `
j

= 1, which implies

cj = A, i
j

= δ, λ = 1 and leads to A = 1−β
αβ , τ j = ujc (A, 1) and bj = (1− α)A1−1/γj .

9Maliar and Maliar (2003) show how to use analytical aggregation to derive similar policy functions for control
variables in certain classes of heterogeneous-agent models with endogenous labor-leisure choice and agent-specific
correlated shocks.

10Model I has a degenerate labor-leisure choice, and Models III and IV are identical to Model II up to specific
assumptions about preferences and technologies. In the comparison analysis of Kollmann et al. (2011b), the
implications about accuracy and speed of the studied methods are similar across Models II–IV.
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Solution procedure. We use the Dynare implementation of the standard perturbation method
(PER). Dynare is a software platform for handling (i.e., solving, simulating, estimating) a wide
class of economic models, and in particular, RBC and dynamic stochastic general equilibrium
models based on the rational expectations paradigm. Dynare is able to deliver standard per-
turbation solutions up to third order.11

To implement our hybrid method (HYB), we solve for the values of the control variables
satisfying the system of the intra-temporal-choice conditions. To be more specific, we compute a
sequence for investment {it}t=1,...,T using (10), and we find 2N +1 allocations {ct, `t, λt}t=1,...,T

satisfying (9), (12) and (13) using the iteration-on-allocation numerical solver with a target
unit-free accuracy of 10−10 and damping parameter ς = 0.01; see Maliar et al. (2011) for further
details on how this solver is implemented in the context of the model (8)–(11).

Accuracy tests. In the implementation of the accuracy tests, we follow Juillard and Villemot
(2011). This makes our accuracy results directly comparable to those in Kollmann et al. (2011b).
Namely, we compute the size of approximation errors in the 4N+1 optimality conditions, world
resource constraint (9) and optimality conditions (12), (13) and (14) for j = 1, . . . , N . We
evaluate errors on two different kinds of domain: one is a sphere of radius r from the steady
state (we consider r = {0.01, 0.10, 0.30}) and the other is a stochastic simulation of 10,200
observation; these types of accuracy tests are introduced in Judd (1992) and Jin and Judd
(2002), respectively.

Hardware and software. We use a workstation with two quad-core Intel R© Xeon X5460
processors (clocked at 3.16Ghz), 8Gb of RAM, and 64-bit Debian GNU/Linux.12 The programs
are written in C++, rely on the GNU Scientific Library13 for mathematical routines and are
publicly available.14

4.3.2 Numerical results

In this section, we assess the performance of the hybrid method in which the capital policy
functions are computed by perturbation and the remaining policy functions are computed using
the iteration-on-allocation numerical solver. We compare the accuracy of this hybrid method to
that of the standard perturbation method.15 For both methods, we compute perturbations of
first, second and third orders. For comparison, we also provide the accuracy frontier attained in
the comparison analysis of Kollmann et al. (2011b) (with a reference to the method that delivers
the best accuracy in each case).16 Note that perturbations of the third order are significantly
less computationally costly than second-degree approximations for global projection methods.

In Table 1, we provide the results for the model with N = 2. As is seen from the table, PER
produces relatively small approximation errors in the Euler equations but larger approximation
errors in the intra-temporal-choice conditions (9), (12) and (13) (although errors in the world
resource constraint are smaller than those in the other two conditions). In turn, HYB produces

11See http://www.dynare.org and Adjemian et al. (2011) for more details on Dynare.
12See http://www.debian.org.
13See http://www.gnu.org/software/gsl/ and Galassi et al. (2003).
14See Sébastien Villemot’s web site: http://www.dynare.org/sebastien/.
15Our implementation of the perturbation method differs from that of Kollmann et al. (2011a) in that they

first take the logarithms of variables before constructing a Taylor expansion, while we work with the variables in
levels.

16Regarding degrees of approximation in Kollmann et al. (2011a), Maliar et al. (2011) and Pichler (2011) use
second-degree polynomials, while Malin et al. (2011) use Smolyak’s polynomial that have four times more terms
than a second-degree complete polynomial.
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negligible approximation errors in the intra-temporal-choice conditions by construction. The
only source of errors for HYB is approximation errors in the Euler equations. In fact, Euler-
equation errors for HYB are larger than those for PER. However, such errors are still smaller
than errors in the intra-temporal-choice optimality conditions for PER (the exceptions here
are the case of first-order perturbation for the test on a sphere with a small radius r = 0.01,
and second-order perturbation on a sphere with a medium radius r = 0.1). As a consequence,
HYB dominates PER in accuracy. The accuracy improvements are more pronounced for the
test on a stochastic simulation than for the test on a sphere. For example, under the third-
order approximation, the overall accuracy increases from 0.107% for PER to 0.002% for HYB
(equivalently, by 1.5 log10 units).

The comparison with the accuracy frontier attained in the comparison analysis of Kollmann
et al. (2011b) shows the following tendencies. First, for the test on a sphere with a small radius,
r = 0.01, second-order HYB is almost as accurate as (second-order) CGA, and third-order HYB
is more accurate by 1.58 log10 units than (second-order) CGA. For the test on a sphere with
a larger radius of r = 0.1, second-order HYB is not more accurate than Smolyak’s algorithm,
but third-order HYB is (recall that Smolyak’s polynomial has four times more terms than a
second-degree complete polynomial). For the test on a sphere with the largest radius considered,
r = 0.3, HYB performs worse than Smolyak’s algorithm which is not surprising given that the
latter method is a global solution method. Finally, for the test on a stochastic simulation,
third-order HYB performs better than CGA, but second-order HYB does not.

To check the robustness of our analysis, in Table 2, we report the corresponding results for
the model with N = 8. Overall, the tendencies are very similar to those observed in Table 1.
The differences in accuracy between PER and HYB are even more significant reaching almost
two orders of magnitude in the test on a stochastic simulation. For the test on a sphere with
a small radius, r = 0.01, second-order approximations produced by HYB are significantly more
accurate than those produced by all other methods compared in Kollmann et al. (2011b). For
all the other tests, third-order HYB significantly outperforms the global methods compared in
Kollmann et al. (2011b), while second-order HYB is still not better than these global methods.

As far as the cost is concerned, the solution time reported in Tables 1 and 2 for HYB
coincides with that for PER. This reflects the fact that HYB uses the perturbation solution
for capital and does not construct an explicit solution for the other variables. Such a solution
is obtained only in the testing procedure. Furthermore, the tables indicate that HYB requires
more time to run the accuracy tests than PER. Specifically, for N = 2, the differences in
running time between HYB and PER are larger for N = 2 than for N = 8. However, HYB is
still much less expensive than any global method in the literature. The relatively high cost of
hybrid solutions is largely explained by a specific implementation of the iteration-on-allocation
solver, namely, by using this solver in the point-by-point manner. As mentioned above, using a
vectorized version of this solver will reduce the cost of hybrid solutions dramatically.

In Table 3, we report the unit-free maximum absolute differences between the simulated time
series produced by any pair of the solution methods considered. In addition to the pairwise
comparisons between the first-, second- and third-order PER and HYB, we make a comparison
with CGA, which presumably delivers very accurate solutions. We consider the model with
N = 2, and present the results for consumption, labor, investment and capital of countries 1
and 2. First of all notice that as the order of approximation for PER and HYB increases, the
difference between time-series solutions produced by these methods and CGA monotonically
decreases. An exception is an HYB solution for capital of countries 1 and 2 in which case the
difference between CGA and HYB is the smallest for second-order HYB. Furthermore, in most
cases the differences between HYB and CGA solutions are smaller than between PER and CGA
solutions, the sole exception being consumption for which third-order PER is closer to CGA
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than third-order HYB.

5 Conclusion

The comparison analysis of Kollmann et al. (2011b) documented a trade-off between accuracy
and speed of the studied solution methods. We are not subject to such a tradeoff. Our simple
hybrid method is both faster and more accurate than any global solution method participating in
the above comparison. We attain higher accuracy in particular because we are able to compute
third-degree polynomial approximations while the methods studied in Kollmann et al. (2011b)
are limited to second-degree polynomials. The cost of global solution methods can be reduced,
for example, by using less expensive integration rules and by precomputing integrals outside
the main iterative cycle; see Maliar et al. (2011) and Judd et al. (2011a,b) for a discussion.
However, even if global third-degree polynomial approximations were feasible, they would be
orders of magnitude more expensive than our simple hybrid solutions. Our current objective is
to incorporate a routine constructing hybrid solutions in automated perturbation software such
as Dynare: this routine must compute different hybrid solutions, compare their accuracy and
deliver the most accurate solution to the user.
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Table 1: Multi-country model with N = 2 countries: maximum absolute errors by equation on
a sphere and on a stochastic simulation.

1st order 2nd order 3rd order Accuracy frontier in
PER HYB PER HYB PER HYB Kollmann et al. (2011b)

Solution time 0.01 0.01 0.02 0.02 0.04 0.04 1602.1 (CGA)
2.2 (SMOL)

Radius r = 0.01

EulerEq −5.91 −3.83 −6.87 −5.95 −8.41 −7.60
MUCons −4.39 – −5.26 – −6.69 –
MULabor −4.32 – −5.40 – −7.03 –
WorResConst −4.64 – −6.09 – −7.83 –

Overall −4.32 −3.83 −5.26 −5.95 −6.69 −7.60 −6.02 (CGA)

Time to run test 0.10 4.51 0.14 3.29 0.27 2.53

Radius r = 0.10

EulerEq −4.07 −2.44 −4.12 −3.63 −5.49 −5.20
MUCons −2.39 – −3.69 – −4.76 –
MULabor −2.25 – −3.64 – −4.81 –
WorResConst −2.63 – −3.88 – −5.20 –

Overall −2.25 −2.44 −3.64 −3.63 −4.76 −5.20 −4.40 (SMOL)

Time to run test 0.10 5.02 0.14 4.13 0.27 3.42

Radius r = 0.30

EulerEq −3.08 −1.38 −2.62 −2.03 −3.55 −3.06
MUCons −1.43 – −2.16 – −2.84 –
MULabor −1.11 – −1.99 – −2.87 –
WorResConst −1.52 – −2.25 – −3.16 –

Overall −1.11 −1.38 −1.99 −2.03 −2.84 −3.06 −3.29 (SMOL)

Time to run test 0.10 5.62 0.14 5.07 0.27 4.67

Stochastic simulation

EulerEq −3.41 −2.22 −3.37 −3.44 −4.02 −4.69
MUCons −1.55 – −2.25 – −2.97 –
MULabor −1.57 – −2.29 – −3.03 –
WorResConst −2.10 – −3.18 – −4.11 –

Overall −1.55 −2.22 −2.25 −3.44 −2.97 −4.69 −4.50 (CGA)

Time to run test 0.98 49.48 1.42 40.43 2.67 33.03

Notes: For each model equation (listed in the 1st column), the table reports maximum absolute errors in log10 units

across countries and test points. For panels “Radius r = 0.01”, “Radius r = 0.10” and “Radius r = 0.30”, the set of test

points is 1,000 draws of state variables located on spheres with radii 0.01, 0.10 and 0.30, respectively; for panel “stochastic

simulation”, the set of test points is a stochastic simulation of 10,000 periods. An entry “–” is used if the accuracy measure

is below −10 (such errors are viewed as negligible).

Model equations are as follows: “EulerEq” is Euler equation (14); “MUCons” equates the (scaled) marginal utility of

consumption to the Lagrange multiplier, see (12); “MULabor” equates the (scaled) marginal utility of labor to marginal

productivity of labor multiplied by the Lagrange multiplier, see (13); “WorResConst” is world resource constraint (9);

“Overall” is the maximum error across all the model’s equations; “Solution time” is time for computing a solution, and

“Time to run test” is time for running a test in seconds; and “CGA” and “SMOL” are abbreviations for the cluster-grid,

and Smolyak’s methods, respectively.
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Table 2: Multi-country model with N = 8 countries: maximum absolute errors by equation on
a sphere and on a stochastic simulation.

1st order 2nd order 3rd order Accuracy frontier in
PER HYB PER HYB PER HYB Kollmann et al. (2011b)

Solution time 0.03 0.03 0.06 0.06 1.32 1.32 27785.8 (CGA)
12126.8 (SMOL)

Radius r = 0.01

EulerEq −6.26 −3.85 −7.07 −6.36 −7.85 −7.37
MUCons −5.28 – −5.41 – −6.23 –
MULabor −4.60 – −5.34 – −6.57 –
WorResConst −5.25 – −6.22 – −7.65 –

Overall −4.60 −3.85 −5.34 −6.36 −6.23 −7.37 −6.03 (CGA)

Time to run test 0.86 14.75 3.29 13.77 26.73 36.19

Radius r = 0.10

EulerEq −4.20 −3.23 −5.04 −4.63 −6.76 −6.11
MUCons −3.28 – −4.54 – −6.02 –
MULabor −2.55 – −3.93 – −5.48 –
WorResConst −3.25 – −4.75 – −6.18 –

Overall −2.55 −3.23 −3.93 −4.63 −5.48 −6.11 −4.96 (CGA)

Time to run test 0.85 15.37 3.29 15.19 27.00 36.59

Radius r = 0.30

EulerEq −3.17 −2.14 −3.57 −3.06 −4.68 −4.22
MUCons −2.32 – −3.77 – −4.74 –
MULabor −1.47 – −2.46 – −3.51 –
WorResConst −2.29 – −3.38 – −4.29 –

Overall −1.47 −2.14 −2.46 −3.06 −3.51 −4.22 −4.07 (SMOL)

Time to run test 0.85 17.37 3.36 17.93 26.97 39.46

Stochastic simulation

EulerEq −3.53 −2.30 −3.49 −3.45 −4.37 −5.02
MUCons −1.79 – −2.66 – −3.52 –
MULabor −1.58 – −2.40 – −3.22 –
WorResConst −2.22 – −3.44 – −4.48 –

Overall −1.58 −2.30 −2.40 −3.45 −3.22 −5.02 −4.54 (CGA)

Time to run test 8.48 157.77 34.48 160.56 269.86 373.92

Notes: For each model equation (listed in the 1st column), the table reports maximum absolute errors in log10 units

across countries and test points. For panels “Radius r = 0.01”, “Radius r = 0.10” and “Radius r = 0.30”, the set of test

points is 1,000 draws of state variables located on spheres with radii 0.01, 0.10 and 0.30, respectively; for panel “stochastic

simulation”, the set of test points is a stochastic simulation of 10,000 periods. An entry “–” is used if the accuracy measure

is below −10 (such errors are viewed as negligible).

Model equations are as follows: “EulerEq” is Euler equation (14); “MUCons” equates the (scaled) marginal utility of

consumption to the Lagrange multiplier, see (12); “MULabor” equates the (scaled) marginal utility of labor to marginal

productivity of labor multiplied by the Lagrange multiplier, see (13); “WorResConst” is world resource constraint (9);

“Overall” is the maximum error across all the model’s equations; “Solution time” is time for computing a solution, and

“Time to run test” is time for running a test in seconds; and “CGA” and “SMOL” are abbreviations for the cluster-grid,

and Smolyak’s methods, respectively.
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Table 3: Multi-country model with N = 2 countries: maximum differences across simulated
series.

1st order 2nd order 3rd order
Variable PER HYB PER HYB PER HYB

Consumption of country 1
1st order HYB −2.40
2nd order PER −2.54 −2.63
2nd order HYB −2.53 −2.66 −3.44
3rd order PER −2.54 −2.65 −3.42 −3.91
3rd order HYB −2.54 −2.65 −3.46 −3.91 −4.44
CGA −2.54 −2.64 −3.45 −4.02 −4.21 −4.17
Consumption of country 2
1st order HYB −1.74
2nd order PER −1.88 −2.04
2nd order HYB −1.88 −2.06 −3.09
3rd order PER −1.89 −2.05 −3.32 −3.31
3rd order HYB −1.89 −2.05 −3.35 −3.31 −4.34
CGA −1.88 −2.04 −3.19 −3.42 −3.65 −3.57
Labor supply of country 1
1st order HYB −2.75
2nd order PER −3.09 −3.01
2nd order HYB −3.08 −3.02 −3.58
3rd order PER −3.07 −3.02 −3.57 −4.36
3rd order HYB −3.07 −3.02 −3.62 −4.36 −4.53
CGA −3.08 −3.02 −3.62 −4.46 −4.48 −4.66
Labor supply of country 2
1st order HYB −2.15
2nd order PER −2.28 −2.16
2nd order HYB −2.27 −2.17 −2.95
3rd order PER −2.28 −2.16 −2.88 −3.48
3rd order HYB −2.28 −2.16 −2.94 −3.44 −3.71
CGA −2.28 −2.15 −2.94 −3.53 −3.65 −3.73
Investment of country 1
1st order HYB −1.39
2nd order PER −1.42 −1.41
2nd order HYB −1.42 −1.42 −2.85
3rd order PER −1.41 −1.42 −2.70 −2.73
3rd order HYB −1.41 −1.42 −2.70 −2.73 −4.12
CGA −1.41 −1.42 −2.69 −2.84 −2.84 −2.85
Investment of country 2
1st order HYB −1.33
2nd order PER −1.23 −1.50
2nd order HYB −1.23 −1.51 −2.87
3rd order PER −1.24 −1.51 −2.66 −2.69
3rd order HYB −1.24 −1.51 −2.67 −2.69 −4.17
CGA −1.23 −1.50 −2.71 −2.80 −2.84 −2.85
Capital of country 1
1st order HYB −1.94
2nd order PER −1.82 −1.97
2nd order HYB −1.81 −1.99 −3.20
3rd order PER −1.81 −1.99 −3.18 −3.17
3rd order HYB −1.81 −1.99 −3.20 −3.16 −4.51
CGA −1.81 −1.99 −3.28 −3.48 −3.45 −3.44
Capital of country 2
1st order HYB −1.95
2nd order PER −1.81 −2.19
2nd order HYB −1.82 −2.22 −3.31
3rd order PER −1.82 −2.20 −3.23 −3.54
3rd order HYB −1.82 −2.21 −3.24 −3.55 −4.62
CGA −1.82 −2.22 −3.30 −3.69 −3.51 −3.53

Notes: For each model variable, the table reports maximum absolute values (in log10 units) of relative differences between

simulated series. The comparison is done pairwise across solution methods. “CGA” is an abbreviation for the cluster-grid

method.
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