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Abstract

We prove the existence of unique solutions for all undeteethicoefficients of nonlinear per-
turbations of arbitrary order in a wide class of discreteetidDSGE models under standard
regularity and saddle stability assumptions for linearrapipnations. Our result follows from
the straightforward application of matrix analysis to oertprbation derived with Kronecker
tensor calculus. Additionally, we relax the assumptioresdeel for the local existence theorem
of perturbation solutions and prove that the local solutsondependent of terms first order in

the perturbation parameter.
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1 Introduction

Macroeconomists are increasingly using nonlinear mettmdsalyze dynamic stochastic gen-
eral equilibrium (DSGE) models. One such method, pertishatsuccessively differentiates
the equilibrium conditions to recover the coefficients oighler order Taylor expansion of the
policy function. As emphasized by Gaspar and Judd (199dy {1998, ch. 13), and Jin and
Judd (2002), solvability/nonsingularity conditions mbstfulfilled to ensure the existence of
unique solutions for these undetermined coefficients di¢rigrder terms. Current perturbation
analyses proceed under the seemingly tenuous assumgidhele solvability conditions hold
generically, as no general set of conditions has been praiercorroborate this approach by
proving that the standard assumptions imposed on lineapgjppations to guarantee a unique
stable solution are already sufficient to guarantee theexngs and uniqueness of solutions for
all the unknown coefficients of DSGE perturbations of anteahily high order.

Our main result builds on the Sylvester equation repreentaommon to many perturba-
tion studie$ by representing all of the linear equations in the undeteechicoefficients at all
orders of approximation in a Sylvester form. We confirm theuteof Jin and Judd (2002) that
the solvability conditions (i.e., invertibility of thesmear maps or coefficient matrices) change
as the order of approximation changes: at each order, theettaiting matrix in the Sylvester
equation is a Kronecker power of the linear transition madrfi the state space. Thus, the
change in the solvability conditions is systematic and &edunit-root stability of this lone or-
der dependant matrix is directly dependant on the eigeasalfithe matrix quadratic problem
at first orde® The generalized Bézout theorem can be applied to deflatputhdratic equation
with the unique stable first order solution to relate the $e¢maining unstable eigenvalues to
a generalized eigenvalue problem, which forms the remgihomogenous coefficients in the
series of Sylvester equations. Due to the separation indiogeaddle stability, the spectra of
these pencils in the generalized Sylvester equation naclystrm a disjoint set, satisfying
the necessary and sufficient conditions for the existendeuamjueness of solutions of Chu

(1987) to the entire sequence of Sylvester equations. lideappealing to an eigenvalue sep-

Perturbation in macro DSGE modeling initiated by Gaspar &t (1997) and Judd and Guu (1997) has
been successfully applied to a variety of applications wittew recent examples including the effects of time
varying volatility in interest rates for small open econemin Fernandez-Villaverde, Guerrébn-Quintana, Rubio-
Ramirez, and Uribe (2011), to multi country real busingadecmodels in Kollmann, Kim, and Kim (2011), to
the yield curve with recursive preferences and long rursriskRudebusch and Swanson (2012).

2Beyond second order perturbations, Juillard and Kamerdk42and Kamenik (2005) provide a Sylvester
representation for many of the unknown coefficients in thgjher order perturbation.

3This matrix quadratic—see, e.g., Uhlig (1999)—is the saleeption to the Sylvester representation.



aration, Kim, Kim, Schaumburg, and Sims (2008) demonstteesolvability of a portion of
a second-order perturbation—our results show that an epassing Sylvester representation
can be used to extend their result to all coefficients at aléim of approximation. Thus, we
prove that the solvability conditions do hold genericallg, saddle stability at the first order
ensures the invertibility of all subsequent linear mapgareigss of the order of approximation.

Throughout, we take the existence and smoothness of theypiinction as given and
solve directly for unknown coefficients of its Taylor expams Assuming analyticity,our re-
sult underlines that successive differentiation of thelégjium conditions recovers the policy
function inside its domain of convergence. Our factoraliminates the solvability assump-
tion in Jin and Judd’s (2002) local existence theorem fautsmhs to nonlinear DSGE models.
Schmitt-Grohé and Uribe (2004) and others have arguedhedirst derivative of the policy
function with respect to the perturbation parameter ouglbttzero. However, they assume the
invertibility of the mappings they show to be homogenouspn@ye this invertibility.

The paper is organized as follows. Sectibrontains a nonlinear multivariate DSGE model
and the preliminaries for the approximation to its policypétion. We derive a perturbation
of arbitrary order and present our main result—solvabiityall coefficients given a unique
stable first order solution—in secti@ Section4 presents the proof, with the factored matrix
quadratic at first order pivotal for the solvability of thegsence of equations for higher order
coefficients. We turn to the proof of the local existence @&f plolicy function and of its first-

order independence from the perturbation parameter imosegt Finally, sectioré concludes.

2 DSGE Problem Statement and Policy Function

We begin with our class of models, a system of (nonlinearpséorder expectational differ-

ence equations, and a Taylor approximation of the policgtion we take as a solution.

2.1 Model Class

We analyze a family of discrete-time rational expectatimaglels given by

(1) O=E[f(Ytr1, Y, Yt—1,&)]
the vector functionf : R x R x R™ x R" — R" is assumed™ with respect to all its

arguments, wher# is the order of approximation to be introduced subsequewtly R"Y

4See, e.g., Jin and Judd (2002) and Anderson, Levin, and $w42606).
5See Woodford (1986) for an alternate approach in the spaioéimife sequences of innovations.



endogenous and exogenous variables; ar@R" exogenous shocksWe assume thag; is
i.i.d. with E [&] = 0 andE [st®[m]} finite Ym < M.

2.2 Perturbation Solution

As is usual in perturbation methods, we introduce an auyifi@rameteo < [0, 1] to scale the
uncertainty in the modé.The stochastic model under study corresponds t01 ando = 0

represents the deterministic version of the model. Indggoiutions likewise witlo
() Y =¥(0,z), Yy:R"xR™—RY
with the state vectar; given by

3) %= {yta_l} e R"*1 wheren, = Ny +Ne
t
Assuming time invariance of the policy function and scaliumgertainty give

~ Vi
4 = =
(4) Yer1 =Y(0,Z41), Z11 [0€t+1

The notation)y andy, is adopted to track the source (throughor y;.1 ) of derivatives of

e R §:RT xR - RY

the policy function. This is necessary as (i) the; argument ofy7is itself a function ofy

through its dependance gn and (ii) o scales; 1 in thez. 1 argument ofy; but notg; in the

z argument ofy. This follows from the conditional expectations if)( Conditional ort, & has

been realized and is known with certainty—hence, it is natestwitho; &1, however, has
not yet been realized and is the source of uncertainty—hétrisescaled witho.?

Inserting the policy functions foy; andy; . 1—equations2) and @)—into (1) yields

(5) 0=F {f (37 (o, y("’Z‘)D ,y<o,zt>,zt)] —F(0,2)

O€t+1
a function with arguments andz.1° We will construct a Taylor series approximation of the

solution @) around a deterministic steady state defined as

Definition 2.1. Deterministic Steady State

5This model class encompasses competitive equilibria andrdic programming problems, as well as mod-
els with finitely many heterogenous agents, see Judd anceNe(R012). Nonlinearity or serial correlation in
exogenous processes can be captured in the funt@od the processes themselves are included in the wgctor

&M is them'th fold Kronecker product of; with itself: & @ & - -- ® &.

m times

80ur formulation follows Adjemian, Bastani, Juillard, Mibbi, Perendia, Ratto, and Villemot's (2011)
Dynare, Anderson, Levin, and Swanson’s (2006) Perturbatid, Juillard (2011), and Lombardo (2010). Jin
and Judd’s (2002) or Schmitt-Grohé and Uribe’s (2004) noldesses can be rearranged to fif.

9See also Anderson, Levin, and Swanson (2006) and Juill@tLjXor similar discussions.

1ONote thatg;, 1 is not an argument df as it is the variable of integration inside the expectatides,

F(o,z) = fo(Y/(G, yc(,gtf‘l)Dy(o,zt),zt) P(Etr1) dersg

whereQ is the support ang the p.d.f. ofe;.1. Thus, whero =0, &1 is no longer an argument dfand the
integral (and hence the expectations operator) is suped|yielding the deterministic version of the model.




Lety € R"Y be a vector such that

(6) 0=F(0,2), wherez= m
solving 6) in the absence of both uncertair(ly = 0) and shocksg = 0).1!
The policy function evaluated at the deterministic steatdyesis thusy = y(0,2) andy

likewise solves G= f (V,Y,Y,0). We will admit models that possess unit root solutions in the

first order approximation and do not require the deternimiteady state to be uniqdé.

2.3 Taylor Series Approximation

Sincey is a vector valued function, its partial derivatives formypércube. We use the method
of Lan and Meyer-Gohde (2012b) that differentiates confdsty with the Kronecker product,
allowing us to maintain standard linear algebraic struegudo derive our results.

Definition 2.2. Matrix Derivatives

Let A(B) : RS — RP*A be a matrix-valued function that maps am 4 vector B into an p< q

matrix A(B), the derivative structure of #8) with respect to B is defined as

@) Ag = Tgr {A} = [% %} A
where b denotes i'th row of vector B, indicates transposition; n’th derivatives are
@[]

We leave the details of the associated calculus that germesdhmiliar chain and product
rules as well as Taylor approximations to multidimensiaedtings to the Appendix.

With definition2.2 and assumingg) is CM with respect to all its arguments, we can write a
Taylor series approximation ¢f = y(0, %) at a deterministic steady state as

O | i &l
(9) yt:%ﬂ ﬁyzicrio- (Zt_z)

wherey,i,i € R is the partial derivative of the vector functigrwith respect to the state

vectorz | times and the perturbation parametartimes evaluated at the deterministic steady
state. Here{zi'\i{)j Ly oi] collects all the coefficients associated with ftta fold Kronecker
product of the state vectqiz — z). Higher orders o6 correct the Taylor series coefficients for
uncertainty by successively opening the coefficients thidnignoments in the distribution of

future shocks? We need to generate and solve equations that determineythgse

HAccordingly, the stochastic or “risky” steady state woubdve 0= F (1,2).

12The degenerate nonuniqueness as studied, for examplegim@mier, Rey, and Winant (2011) and Juillard
(2011), however, cannot be studied with the standard feation approach of this paper.

13A similar interpretation can be found in Judd and Mertensl@dor univariate expansions and in Lan and
Meyer-Gohde (2012b) for expansions in infinite sequencé&saivations.
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3 Higher Order Perturbation: Existence and Uniqueness
3.1 Equations Characterizing the Coefficients

Following general practice, we pin down the coefficient measy,;q in (9) though repeated
application of an implicit function theorem by successnifferentiating &) and solving the
resulting systems of equations. Itis the existence anduemgss of solutions to these equations
(and hence for the coefficients in the Taylor series) thdtedocus of our analysis.

A standard result in the literature, noted by Judd (1998,1&), Jin and Judd (2002),
Schmitt-Grohé and Uribe (2004) and others, is that thedriginder terms of the Taylor ex-
pansion are solutions to linear problems taking the coefiisi from lower orders as given.
A Sylvester form for these linear equations has been idedtifi previous studie¥, to our
knowledge, however, ours is the first representation tha&xfpresses all equations of an arbi-
trary order perturbation as Sylvester equations and @yiples a closed form representation of

the order dependency of the homogenous part of the equéomsecker products igy;).

3.1.1 Deterministic First Order Term y, and Matrix Quadratic

To recovely,, we first differentiatef in (5) with respect ta

(10) @ZtT { f } - fyyZZyyz + fyyz + fz
Evaluating this at the deterministic steady state andnggitis expectation to zero yields
(ll) Et [@ZtT { f }] )thz - fyyzZyyz + fyyz+ fz - O

0=0

Takingy,z, as giveny;, then solves

(12) (fyyzzy+ fy)yz+ fz=0
Postmultiplying the foregoing with, yields

(13) fy(yzz))? + fyyz2)+ f,2=0

This is the familiar matrix quadratic equation iyz,) from linear analyse®

3.1.2 Arbitrary Order Terms Y,i

For all other coefficients, we successively differenti&enith respect to the state vectnrand

the perturbation parameter evaluate the resulting expressions at the determinisiicly state

14The Sylvester form in second order context of, e.g., Kim, KBohaumburg, and Sims (2008) or Gomme and
Klein (2011) aside, Juillard and Kamenik (2004) and KamgBB05) show explicitly that many of the unknown
coefficients of a perturbation of arbitrary order can be easdylvester equations.

15see, e.g., Uhlig (1999).



and set their expectations equal to zero. This generate®bgeneralized Sylvester equations,
Lemma 3.1. For all j,i € N9 such that j+i > 1 except the cases 1 and i= 0, the undeter-
mined coefficients,y;i solve the following generalized Sylvester equation

(14) 5ol (3Y2) 0 + (fy+ f¥22) Vaigt +A(},1) =0

where A j,i) is a function of coefficients from lower orders and given mase [st@@“ﬂ , k<i.

Proof. See the Appendix. ]

This representation provides an explicit formulation of tiomogenous structure of the
equations that the unknown coefficients of each order ofagmation must fulfill® which
will facilitate the analysis of solvability using lineargadbra. At each order, the leading matrix
coefficients, fy and fy + fyy,z, remain unchanged and are formed by the coefficients of un-
stable factorization of the matrix quadratic as will be dethin propositiord.6. The trailing
matrix coefficient,(zyyz)®m, is a Kronecker power of the linear transition matrix of thats
space and changes with the order of approximation. Thissistlirce for the dependence of
the solvability conditions on the order of approximatioentified by Jin and Judd (200%j.

However, this dependence is systematic and has a convetoert form.

3.2 Existence and Uniqueness of the Coefficients

Here, we present our main result that the existence of a arstpble solution at first order
guarantees the existence and uniqueness of the unknowiiciese$ of a Taylor expansion of
arbitrary order.

We guarantee a unique stable solution at first order with@lard and Kahn’s (1980) order
and rank condition$® The order condition assumes a full set of latent roots with dvaor
inside and half outside the unit circle
Assumption 3.2. Order
There exist@ny latent roots of A2+ fy\ + f,z—thatis A € R: det(fyX2+ f,X + f,z/) = 0—

of which ry lie inside or on the unit circle andyoutside.

16The derivations for the second order expansion and the theedting Sylvester equations df4) in y,2, Yz,
andy,2 can be found in the Appendix and are needed to initializertladtion that proves lemntal

1specifically, Jin and Judd (2002) first develop a determimpstrturbation irg; only and then perturb stochas-
tically with respect tao. They point out that the change in the solvability condisi@tcurs only in a change in
the order of approximation in the deterministic perturbati This is reflected in14) as the only change in the
homogenous components occurs wjitthe order of the perturbation with respect to the stateorect

8In the working paper version, Lan and Meyer-Gohde (2012a)dwrive the results from the assumptions of
Klein (2000) on the companion linearized pencil of the meduiadratic and its generalized Schur decomposition.
We hasten the exposition by imposing the existence of a erstable solution and regularity directly.



We then assume that a solution can be constructed contdiresg stable eigenvalues
Assumption 3.3. Rank
There exists an X R™*™ such that §X2+ f,X + f,z, = 0 and |eig(X)| < 1.

We now state our main result,
Theorem 3.4. Let the assumption3.2 and 3.3 be fulfilled and set y, equal to this stable
solvent, then there exist unique solutiongyyfor all j,i € N9 such that j+i > 1, for (12) and

the generalized Sylvester equatiofd)(in lemma3.1

Proof. From lemmatat.10and4.11 the conditions of propositioA.8 are fulfilled for for all

j,i € N®such thatj +i > 1. See the following section. ]

While the solvability of coefficients outside the matrix guatic in linear models is guar-
anteed by any separation (and not just unit root) of eiger@glwe must be more careful in
nonlinear models. Kim, Kim, Schaumburg, and Sims (2008yiregthat the square of the
largest eigenvalue in the linear transition matrix be semdtan the smallest unstable eigen-
value for their second order solution. Moving tolél'th order of approximation, the smallest
unstable root in assumptidh2 would analogously need to be larger than khgh power of
the largest eigenvalue iyyz,, the largest stable root in assumpti8r2. Requiring stability
with respect to the unit circle at the first order, of courdmi@ates this problem and ensures

solvability for perturbations of arbitrary ord&t.

4 Solvents, Sylvesters, and Proof of Theorer®.4

After laying out some preliminaries, we factor the matrixadeatic into two regular pencils

with disjoint spectra by deflating the matrix quadrafi8)(according to the Generalized Bézout
Theorem with the stable solvent of assumpt®&8 We then apply this factorization to the
sequence of generalized Sylvester equatiddsiq lemma3.1and prove that the existence of

unique solutions is guaranteed by assumpt&Bsand3.3.

4.1 A Factorization of the Matrix Quadratic

To derive our factorization, we begin by formalizing the matjuadratic equationl®). Our

analysis will proceed initially in the complex plane, bu¢ tlesults carry over when we restrict

19These separations are merely sufficient. The necessaojntigss of lemma.11would still be satisfied up
to M'th order if there is naM’th order or less product of eigenvaluesygf, equal to an eigenvalue &% (2).



solutions to be real valued due to the eigenvalue separatiassumptior8.2, see also Klein
(2000).

Definition 4.1. Matrix Quadratic Problem

For fg, fy, and £z, € RY*"Y, a matrix quadratic MX) : C*"y — C"*'Y is defined as

(15) M(X) = fgX?+ f X + T,z

A solution to the matrix quadratid p) is called a solvent and is defined as
Definition 4.2. Solvent of Matrix Quadratic
X € C%*™ is a solvent of the matrix quadratid ) if and only if M(X) = 0

The eigenvalues of solvents df) are latent roots of the associated lambda maftix,
Definition 4.3. Lambda Matrix
The lambda matrix Ni) : C — C™" (of degree two) associated with5) is given by
(16) M) = fgA2+ fyA + T,z
Its latent roots are values af such thatdetM(A) = 0.

We are now prepared to link lambda matrices and solventsigiirthe generalized Bézout
theorem, repeated in the Appendix, which states that a lamiatrix divided on the right by
a binomial in a matrix has as a remainder the matrix polynbasaociated with the lambda
matrix evaluated at the matrix of the binomial. As noted bywt&aacher (1959, vol. |, ch. 4)
and repeated in Lancaster (1966) and Higham and Kim (200@)simatrix in the binomial is
a solvent of the matrix polynomial, the division is withoetmainder, yielding a factorization
of the matrix polynomial. For our matrix quadratic, the lashalbmatrix can then be factored as
Corollary 4.4. Let y,z, be the stable solvent of assumpti®s3, then (6) has the following

factorization

a7 M) = (Mg + fgyzzy + fy) (In A —y22y)

N N\ V)

~\~ -~

=Ru(A) =Ps(A)
Proof. Apply theoremA.4 in the Appendix to 15), setA = y,z,, and note tha (y,z,) = 0 as

y-Zy is a solvent oM (X). O
Note that the latent roots & (A) are given byA’s such that

(18) det(A fy + fyyzz, + fy) det(In A —yzz)) =0

The latter determinant gives the eigenvalues associatddtiae solventy,z, and the former

determinant gives a generalized eigenvalue problem indgb#icients ofM(X) and the solvent

20gee, e.g., J. E. Dennis, Traub, and Weber (1976, p. 835) dntaaher (1959, vol. |, p. 228).



y22,.2t This former determinant is simply a multidimensional laralndatrix analog to Viéte's
formula, which relates the two solutions, andx,, of the scalar quadratiax® + bx+c = 0
througha(x; + x2) + b = 0. We can now use assumptiBr2 on the number of eigenvalues to
establish the regularity ¢, (A) andPs(A)

Lemma 4.5. The pencils £(A) and R(A) are both regular.

Proof. As detM(A) is vanishing for only By values (respecting multiplicities) i@, detR, (A)
and dePs(A) are likewise vanishing for onlgy, values (respecting multiplicities) i@. Thus,
there exista\ € C such that defy (A) # 0 and likewise such that d&g (A) # 0. O

Additionally, assumptior.2restricts the eigenvalues Bfj (A).
Proposition 4.6. Let y,z, be the stable solvent of assumpt®B, the eigenvalues offfA) are

contained entirely outside the closed unit circle.

Proof. From assumptior3.2, there are exactlyy latent roots ofM(A) inside or on the unit
circle and exactlyny outside the unit circle. They eigenvalues of the pendis(A) are all
inside or on the unit circle by assumpti8B8. Hence, the, eigenvalues oRy (A) are theny

remaining latent roots d¥1(A), which must be outside the unit circle. O

From propositior#.6, there exists a unique solution tb2)
Corollary 4.7. Let y,z, be the stable solvent of assumpt®3, there exists a unique, yhat
solves 12), given by

(19) V2 = —(fgyzzy+ fy) '

Proof. At issue is whetherfyy,z, + fy is nonsingular. As the eigenvalues Bj(A) are all
outside the unit circle following propositioh6, det(A fy + fyy,z,+ fy) # 0 for [A\| < 1. This
applies, of course td = 0, from which we can see that dd}y,z,+ fy) # 0 ]

The regularity of these pencils and the disjointness ofr thigectra will be central to the

solvability of the undetermined coefficients of perturbas of arbitrary order.

4.2 Existence and Uniqueness in Sylvester Equations

The necessary and sufficient conditions proposed by Theb@@hu (1987) for the existence
and uniqueness of solutions to generalized Sylvester iempsatquires the two matrix pencils
formed by the leading and trailing matrix coefficients to bgular and have disjoint spectra.

We prove here that they are fulfilled for all our equationssimina3.1as a direct consequence

21The Appendix contains a definition of a penél[)), and its spectrum or set of generalized eigenvalpig).



of the existence of the unique stable solution at first ordér.adapt his theorem, adopting his
notation temporarily, to our purposes in the following
Proposition 4.8. There exists a unique solution,&XR™", for the Sylvester equation
AXB+CXD+E=0
where AC € R™™Mand D,B € R™", if and only if
1. Pac(z) = Az+C and Bg(z) = Dz— B are regular matrix pencils, and

2. p(Pac) Np(Poe) = 0, e.g. their spectra are disjoint
Proof. See Chu (1987). Notice the rearrangement and redefinititeriofs. O

Before we examine the general case, we will highlight theifitn behind propositiod.8
using a scalar version o14), whenfy, fy,y.z, andzy, € R andA(j,i) is a scalar function of
known terms®? In this case,14) can be arranged as
(20) [f9(@y2)! + (fy+ f5¥23) | Yoot + A1) = 0
From, e.g., Strang (2009), the foregoing has a unique solifteand only if the leading coeffi-
cient is not zero, i.e.[f;,(zyyz)j + (fy+ fyyzzy)] # 0. As otherwise there is either no solution
(whenA(j,i) # 0) or there exists infinitely many solutions (whagj,i) = 0). The conditions
in propositiord.8 classify the two ways this coefficient can be equal to zero.

The regularity condition in the scalar case precludes bogffficients in either of the pencils
being equal to zero: eithdy = fy + fyy,z = 0 or 1= (z,y;)' = 0. Obviously, both coefficients
in the trailing pencil cannot be zero and this general regylbolds in the matrix case as well.
The second condition, disjoint spectra, rules out the ramgihurdle that the sum of all the
coefficients is zero, which can be rearrangedf—yéislf?’—zzy =+ (zyyz)j. Recognize that the two
terms correspond to the eigenvalues of the scalar reguteilp&, (A) andPis(A), hence their
set of eigenvalues (or spectra) must not contain any iderglements (be disjoint).

Returning to the general case, we first define the leading railghgy matrix pencils and
then establish their regularity and the disjointness af th@ectra.

Definition 4.9. For all j € N°, the leading and trailing matrix pencils, respectively, tbé
generalized Sylvester equatid¥j in lemma3.1are

1. My + fyy,2z,+ fy = Ry (M), see propositiod.6

2. Rs(\) = Al — (y,)“
The regularity of both the pencils is straightforward andusimarized in the following

22This special case, of course, is not useful practicallyhéitll shocks or the presenceyef; has to be shut
down, but the mechanisms behind the matrix case are uséfudifrated in this case.
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Lemma 4.10.For all j € N° R, (M) and Rs(\) and are regular

Proof. For Ry (A), see lemmat.5. For Ris(A), this follows from its leading matrix being the

identity matrix, see Gantmacher (1959, vol. Il, pp. 25-27). O

The spectral disjointness follows nearly directly from thetorization of the matrix quadratic
in corollary 4.4, with the spectrum of the leading penéll (A) being outside and that of
the trailing pencilPs(A) being inside the closed unit circle. From corollaty, the pencil
Ps(A) = In A — Y72, is stable, but noting tha, andz are two constant matrices with all their

entries being either unity or zero

@) z =9 {z}=9;{z}= lo "y } » % = Igg iz} = Doy {241} = {O”,yxne]

Ne X Ny Ne
the matrixz,y, in Rs(A) is

YzZy YzZe
(22) Yz {onexny 0}

and it follows directly® that the the eigenvalues &fs(A) are all stable with respect to the
closed unit circle, and thus those of an arbitrary Kronegmwer too. We summarize the
disjointness in the following

Lemma 4.11. For all j € NO, the spectra of (A) and Rs(A) form a disjoint set.
Proof. See Appendix. ]

From lemmatat.10and4.11, propositiond.8 applies and the existence and uniqueness of
solutions to the generalized Sylvester equatidd ih lemma3.1is immediate, completing—

along with corollary4.7—the proof of our main result in theore®.

5 Applications

Jin and Judd (2002) provide a local existence theorem fasdhgion to stochastic models. We
eliminate their solvability assumption, as their assuopdf a unique locally asymptotically
stable solution enables us to apply our factorization tdioorthat their solvability assumption
is necessarily fulfilled, analogously to our theordm.

Theorem 5.1. Simplified Local Existence Theorem of Jin and Judd (2002)

If (i) the function f in () exists and is analytic for alf; in some neighborhood & defined
in (6), (ii) there exists a unique deterministic solutiofOyz ) locally analytic in z and locally
asymptotically stable, (iii) E;] = 0, and (iv) & has bounded support, then there is ax O

such that for all(z, o) in a ball with radius r centered af0,z) there exists a unique solution

233ee, e.g., Golub and Loan (1996, p. 311).
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y(0,%) to (5). Furthermore, all derivatives of(p, z ) exist in a neighborhood @D, z) and can

be solved by implicit differentiation.
Proof. See the Appendix. O

All told, what is needed for the local existence of a solutiora stochastic problem is
sufficient differentiability of the equilibrium conditian the existence of a solution to the de-
terministic variant of the model and restrictions on the reats and support of the stochastic
processes that ensure the model remains well defthed.

Previous studies have conjectured the independence obtloy function from first order
effects of the perturbation parametgy; & = O fori = 1), as the equations that these coefficients
solve are homogenous. The conjecture lies in the solwabilithese systems: Schmitt-Grohé
and Uribe (2004) to second, Andreasen (2012) to third, amé&dd Judd (2002) to arbitrary
order prove that the unknown coefficients involving the pdration parameter solve homo-
geneous equations. Of course, the zero solution solves #psations, but the claim that the
solution is uniquely zero requires solvability in additiom homogeneity—see, e.g., Strang
(2009). Theoren3.4adds the missing link, showing not only that zero is a sofufes follows
from homogeneity), but that it is the only solution for a kbmy saddle stable model. With
the first moment of exogenous shocks andyal} for k < j zero, the generalized Sylvester
equations iry,j; are homogenous
(23) 5o (2%2) )+ (fy+ f5¥22) V1o = O
As the zero matrix is always a solution t83) and the solution must be unique following
theorem3.4, y,i; = 0 is the unique solution for ajl. We formalize this in the following

Proposition 5.2. Let the conditions for theore®4 hold, then yj; = O for all j € N°.
Proof. See the Appendix. O

The intuition behind this is simple: the unknown coefficigpt is the comparative static
matrix measuring the impact of the first moment of future exams shocks on the policy
functiony (and its derivatives with respect to the state vegrtprAs the first moment of future
exogenous shocks is assumed to be zero, it has no impact&hal, our main result confirms
the conjecture of Jin and Judd (2002) and Schmitt-Grohélhitze (2004) by providing the

necessary solvability so as to add uniqueness to theireedstof the zero solution.

245ee Woodford (1986) for a related result in the space of iefsgquences of innovations.
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6 Conclusion

We have proven the existence and uniqueness of solutiorthdanndetermined coefficients
in perturbations of an arbitrarily high order. Thus, soligbof the higher order terms in a
nonlinear perturbation as questioned by Gaspar and Ju@¥ ), 1%udd (1998, ch. 13), and Jin
and Judd (2002) is guaranteed if the model possesses a wstahle solution at first order.
That is, successive differentiation of the equilibrium dition of a linearly saddle stable model
leads to a unique set of coefficients for a Taylor expansighepolicy function.

With the recent proliferation of interest in nonlinear nmadb and general familiarity of
economists with the first order perturbation—i.e., (lagghrization, our results should provide
confidence to researchers refining their approximationadorporate nonlinearity that their
perturbations of arbitrary order will necessarily be agged with a unique solution if the linear
approximation has a unique stable solution. For users ofnigal perturbation algorithms, we
have answered two questions. First, given a nonlinear gition solution from a numerical
algorithm, is this solution the only solution? Second, stianumerical algorithm fail to
deliver a solution: does a solution not exist at all or did mloenerical algorithm simply fail
to find a solution? Given a unique stable solution at first Qroler results provide a definitive

assurance that solutions for all unknown coefficients irptreurbation exist and are unique.
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A Appendices
A.1 A Multidimensional Calculus and Taylor Approximation

Theorem A.1. A Multidimensional Calculus
Given the vector B= RS*! and the matrix-valued functions FB — RP*4, G: B — R%Y,
H : B — RY*V and given the vector-valued function:® — RY*1 J:C — RP*! and the
matrix-valued function AC — RP*9, the following rules of calculus hold
1. Matrix Product RuleZgr {FG} = Fg (Is® G) 4+ FGg, where kis an sx s identity matrix
2. Matrix Chain Rule:Zgr {A(C)} = Ac (Ca®@1q), where } is an gx q identity matrix
3. Matrix Kronecker Product RuleZgr { F®H } =F®H+ (F®Hg) (Kq7s®lev :

pxq uxv
where K5 is a gsx gs commutation matrix (see Magnus and Neudecker (1979)).

Proof. See Lan and Meyer-Gohde (2012b). ]

TheM-th order Taylor approximation ofJ at the deterministic steady sta@) {5%°

Corollary A.2. An M-th order Taylor Approximation ogj is written as
M M—]
1 1

(A-1) Yt = Z} i !yzjoioi] (z —2)®“]

Proof. From Vetter (1973), a multldlmensmnal Taylor expansiogii@n by

A-2 M @ "M(B) (B—B)“I" B.B
( ) (pxl)((sxl Z BT ) +RN+1( ) )
(A-3) whereRy1 (B,B) = = / NEME) (150 (B-8)°N) d
Differentiating @) M times,a Taylor approximation at the deterministic steddiez is
1/1_ 1 1 1 M
Yt = O' y+ !y00'+ EyOZO' +...+my0MO'
1 1 1 1 ) 1 M1 _
ti gzt Y0 + 5 Y20+t myzowm (z—2)
1 1 1 1 _ _
+ E (ayZZ + ﬂyzzoo'—f— EyZZCZO'Z +...+ MyZZCMfzo'M 2) (Zt . Z)@[Z}
1
+ WayZM (z—2 e
Writing the foregoing more compactly yield81). O

A.2 Pencils and Spectra

Definition A.3. Matrix Pencil and Spectrum

Z5\We leave this dependency implicit in the following and adibyetnotation of definitior2.2
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Let P: C — C™" be a matrix-valued function of a complex variable; a matmxpil. Its set of

generalized eigenvalues or spectrp(®) is defined vigp(P) = {z € C : detP(z) = 0}.

A.3 The Generalized B2zout Theorem

Theorem A.4. The Generalized &out Theorem

The arbitrary lambda matrix
M(A) = MoA™+MA™ L ...+ M, where M # ( 0 |
nxn

when divided on the right by the binomighl— A yields
M(A) = Q(\) (I — A) + M(A)
where QA) = MoA™ 1+ (MpA+ M) A2 .. - MgA™ L + M]A™2 ...+ My,

Proof. See Gantmacher (1959, vol. I). O

A.4 Proof of Lemma3.1

We will first show that for allj,i € N° such thatj +i > 1 except the casg¢ = 1 andi = 0,
successive differentiation of the functidrwith respect to its argumentg,anda, yields

(A-4) Dyrigd 1} = T390 (2y2) "V + (fy + 159:2)) Yagi + B )

where the functiorB(j,i) is (i) linear in &1 up to and including-th Kronecker power and
contains (ii) products involving derivatives gfandy with respect ta; j +i or less times and

o i or less times except for the unknowy,i under consideration
(A5)  B(.i) =B (Jao Vo511 )
(A-6) wherel =0,1,2,...,j+i; k=0,1,2,...,i; | +k < j+i; but notl = jandk =i
The index rule A-6) ensures thaB( j, i) contains only terms given by previous calculations
with the unknowny,;qi, excluded by = j andk =i simultaneously having been disallowed.
We will proceed inductively by differentiatingdé4) with respect taz ando respectively

and confirming that the two resulting expressions take tha fuf (A-4). Beginning withz
Dring {1} =90 (2¥) VY + (fy+ 592 Voo
+ 2 {15} (10, |90 (32 °1 | ) + 590 77 { (232) 11 |
+ @th{ fy} (Inz ®YZj0i) + @z{T { f)?VZZy} (Inz ®YZj0i)
(A-7) +9:B(y s®[k]
4 YAok: YAok: €11

The second and third lines of the foregoing contain produetslving the derivatives oy

andy'with respect t@; j +i or less times and i or less times, given by previous calculations.
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The last line contains products of the derivativey @ndy with respect taz j+i+ 1 or
fewer ando i or fewer times, as is revealed by differentiating thro®jlj, i) in the last line

with respect ta; in which

(A-8) Dy {Tao} = Var1ok(2¥2) @12], Zyr {Yaok} = Yariokl(2yy2) @ 14]

wherel =0,1,2,...,j+i; k=0,1,2,...,i; | +k< j+i; butnotl = jandk =i
Importantly, the unknown under consideration upon difféedion, y,;14i, is excluded by ad-
vancing the exclusion in the index rule: with gg.i in B(j,i), there is no/,j14 in B(j+1,1).
Furthermore, the terms are lineargn 1 up to and including thé-th Kronecker power as dif-

®]

ferentiatinge, +'f in the last line does not advance the indelence A-7) can be rewritten

(A-9) “@ZtTHloi {f} = fy Vi1 (Zyy2)®“+l} + (fy+ ff/VzZy) Yzi+1g +B(J +1,0)
Hence differentiation with respect moconfirms the form of A-4).

Differentiating A-4) with respect tao yields
gthiowl{ f} =t5¥i0i41 (Zyyz)®m + (fy+ f§¥22) Ysigita
+ Zs{ fy} [yzjoi (ZVYZ)(X)“]} + 1590161 (BY2) “UTH 4 fy 916 Ze811(2y2) V)
+ 15901 75 { (292 "0} + Tl 1y} + Dol 59225 i
(A-10) + 76 {B (Va0 yao ey ) |
The second and third lines of the foregoing contain produetsiving the derivatives of
andy with respect ta | +i+ 1 or less times and i or less times, all known from previous
calculations. Note again that the unknown, hefg1, only appears in the first line.
The last line contains products involving the derivativeg andy with respect t@ j +i+1
or fewer ando i + 1 or fewer times. To see this, differentiate througjl, i) in the last line with

respect ta in which

(A11) Do {Jaok} = Fur1ge(BYo + Zees1) + Faots Do { Yok} = Vaoern

wherel =0,1,2,...,j+i; k=0,1,2,...,i; | +k < j+i; but notl = j andk =i
Importantly, the unknows,;i+1 iS again not present here either, as wkeni or equivalently,
k+1=i+1,1=]jis not allowed by the index rule: with ng,. in B(j,i), there can be no
Ysigit1 in B(],i+1). Notice that an additionak_ 1 is included in A-11). The possibility that
this term multiplies with the existinfﬁ“f necessitates the advancement of the index associated
k+1]

with Kronecker powers of;_, 1 for B(j,i+ 1) to remain linear in the set aﬁ[l

All terms in the last three lines oA£10) form B( j,i 4+ 1) and @A-10) can be rewritten
(A-12) @ZtTJOi+l{ f} =f5Yzigin (ZyYZ)®m + (fy + f§¥22) Ysigivs + B(], 1 +1)
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Hence differentiation with respect tlikewise confirms the form ofA-4).

The second step is to evalua#-4), having been verified by induction above, with the
given moments o€, 1 and at the deterministic steady state. Setting the reguitipression
equal to zero and letting(j,i) = E [B(],i)] 2 yields (14) in the text.

All that remains is to address the casggothat were excludirtgéindexation rule and to
initialize the induction. Excluded were: ({)j = 0,i = 0) corresponding to the deterministic
steady state value of which was assumed given in the text; and (ij)= 1,i = 0) for vy,
which was solved separately &) in the text. The casgj = 0,i = 1) for y5 can be handled
individually,2® so that we can start the induction with the three second deders | +i = 2),

Y2, Yz0, @andygz, which are provided in the next section separately.

A.5 Generalized Sylvester Equations for Second Order Terms

From corollaryA.2, the second order Taylor expansion of the policy funct@rigkes the form
(A13) Y= +Yo0+ Vo0 (ot Yan0) (2~ )+ Sye(a~ 2P
Given coefficients from the first order, there are three unkr®y,z, y,o andy.
To findy,2, we differentiate 10) with respect t
Dt =2; {19} (In, @ ¥22y) + fy92(2y2) 2 + V.22
(A-14) + 2 { Ty} (In, @Yz) + fyye + Zyr { 12}
where Z,r {fy} = f2 [(Vzyy2) @ In)] + fyg (Y@ In)) + 5
T {ty} = Ty [(Jzyyz) @ In, | + 2 (Y2 ® In,) + Ty
D {f2} = T3z [(F2y2) ® In] + fyz (Y2 @ In,) + T2z
Evaluating at the deterministic steady state, the expgeatat the foregoing set to zero yields

0= B[ T (1} 5y =frve(@m) ™ + (vt v

(A-15) TE [ 7 105} (n,®22y2) + 27 {1y} (In,©y2) + 27 {fz}] ] -
o—
This is L4) with j =2 andi = 0 in lemma3.1
To determinqzo, we differentiate 26) with respect t@
{f} =D { fy} (lnz (fy[¥2(zYo + Ze€t11) +YG]>)

+ fVQZtT {2} [In, ® (Yo + Ze€t11)] + Ty¥22yY20

26 95 {1} = 39.2¥0 + fy¥:z€11+ fg¥o + fyyo, which, when evaluated at the deterministic steady stade an
with its expectation set to zero, yields|Zs{ f }] ‘ L= fgYo + (fy+ T5y22)) Yo + fyY-zeEt[€111] = 0.

=z

O
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(A-16) + fy¥Yo02yy, + -@th { fy} (In,®@Yo) + fyYzo

where @th {¥2} = Y2 (szZ) 92 + )’7zzyyz2

Setting the expectation of the foregoing evaluated at therohenistic steady state to zero yields

0=k [ o{f}} } _fyyZO(ZyyZ> (fyyzzy+ fy) Yzo
+E { 1 {5} (In,® (f5Y2(z)Yo + Ze&t+1) + Yol))

(A-17) + 152, {¥2} [In, ® (2o + Ze€r41)| + Z7 {fy} (In, ®Ycr)] )
This is 14) with j =1 andi = 1 in lemma3.1

Z=
(0}

ON

To determingy/;2, we differentiate 26) with respect tay
D21} =6 { 1} VozyYo + Vozetrs1+ Vo) + 990 {2} (2Yo + ZeErs1)
(A-18) + f5¥20Y52 + fi¥02 + Do { fy } Yo + fy¥o2
where 75 { fg} = fg2 [(Y2(z)Yo + Z&t+1) + o) © In,] + fyg(Yo @ In,)
Do{¥2} = Y2 [(2)Yo + Ze&t11) ® In,| + Yoz
Do {fy} = fyy [(V2(3Yo + ZEt11) + o) @ In, | + f2(Yo @ In,)
Evaluating at the deterministic steady state, the expgeatat the foregoing set to zero yields

0=E [7%{f}] ] = To¥er vty 1) e

+E [@0 { f)?} (yzZyYG + Vo Ze€ry1+ Vo) + 1 {2} (ZyYG + Ze€t11)

=Z

(A-19) + Do {1y} yo]
=0

This is (14) with j =0 andi =2 in IemmaS.l27

A.6 Proof of Lemma4.11

From @2), it follows that the eigenvalues @y, are those of,z, plus a zero eigenvalue with
algebraic multiplicityne and are, following assumptioB.3 all inside the closed unit circle.

As the eigenvalues of the Kronecker product of two matricesegual to the products of the
eigenvalues of the two matrices, all the eigenvalue&gf,) ®“ for all j € N°, and hence the

trailing pencil of definition4.9, are also inside the closed unit circle. The eigenvalueb®f t
leading pencil of definitio.9 are all outside the closed unit circle from propositéf. The

spectra of the two pencils in question are thusly disjoiaing separated by the unit circle.

2"The second moment of future shocks A19) emerges from the terms under the expectation operator.
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A.7 Proof of Theoremb5.1

This is Jin and Judd’s (2002) Theorem 6 adapted to our expositith their assumption (iii)
concerning solvability eliminated. Under our problem staént (), the derivative of Jin and
Judd’s (2002) operatan (y,0) has a leading coefficient matrix given Wby + fyy,z, at the

steady state. From propositidrb, this matrix is necessarily invertible.

A.8 Proof of Proposition 5.2

From the proof of lemma&.1, we can write the equations governing,;, for j > 0, as
(A-20) fy¥sio (¥2) "+ (fy + fyyz) Vaig +A(j, 1) = 0
whereA(j,1) = E [B(j,1)]. We will proceed inductively over the terms B{j,1) where the
homogeneity of the equations will follow from the solvatyilproven in theoren3.4.

To begin, assume that for some> 0, B(j, 1) is a set of terms involving a product of at least
one ofyxg, k< j, or&1, but at most one of the latter. As differentiating
(A-21) fy¥aio (2Y2) "W+ (fy + f9¥22) Yo +B(1,1) = 0
with respect t@ only advances the index see sectior.4, it follows that
(A-22) Z76{B(1.1)} =B(j+1,1)
with B(j + 1,1) being a set of terms involving a product of at least ong&f, k < j+1, or
€11, but at most one of the latter. To start the induction, naenffootnote26 that
(A-23) B(0,1) = fy¥,ze€is1
thus, confirming the composition &4 j, 1) as a set of terms involving a product of at least one
of Yg, K < j, Orge 41, but at most one of the latté?.

Taking expectations
(A-24) A(j,1) = E[B(],1)]
and as the first moment ef was assumed zero, all terms except those involving onlyymtsd
of yxg, k < j are eliminated. Thus, if afxs, k < j are zero, the\(j,1) is zero and the
equation iny,;, is homogenous. From theore3é it then follows thaty,;, must also be zero,
as a unique solution exists and zero is always a solution ofh@lgenous equation. Hence by

induction, starting from the homogenous equationytarall y,j; = 0, for j > 0.

28As k < j would admit only negative values &fin y, for B(0,1), it is useful to examin®(1,1) as well to
confirm the induction. Examining?¢16) for the second order case, which gives

B(1,1) =2 {5} (In,® (§[J2(2¥o + ZeE1+1) + Vo)) + 5% {92} [In, @ (ZYo + Ze€tr1)] + g { Ty} (In, @ Vo)
where 7,1 {J;} = Y,2(2y2) > + V22
notice that all terms involve a product of at least onggfor €, 1, but at most one of the latter.
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