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Abstract

Are optimism shocks an important source of business cycle fluctuations? Are deficit-financed tax cuts
better than deficit-financed spending to increase output? These questions have been previously studied
using SVARs identified with sign and zero restrictions and the answers have been positive and definite in
both cases. While the identification of SVARs with sign and zero restrictions is theoretically attractive
because it allows the researcher to remain agnostic with respect to the responses of the key variables of
interest, we show that current implementation of these techniques does not respect the agnosticism of the
theory. These algorithms impose additional sign restrictions on variables that are seemingly unrestricted
that bias the results and produce misleading confidence intervals. We provide an alternative and efficient
algorithm that does not introduce any additional sign restriction, hence preserving the agnosticism of the
theory. Without the additional restrictions, it is hard to support the claim that either optimism shocks
are an important source of business cycle fluctuations or deficit-financed tax cuts work best at improving

output. Our algorithm is not only correct but also faster than current ones.
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1 Introduction

Are optimism shocks an important source of business cycle fluctuations? Are deficit-financed tax cuts
better than deficit-financed spending to increase output? Several questions such as these have been
previously studied in the literature using SVARs identified by imposing sign and zero restrictions on
impulse response functions and frequently the answers have been definite. For example, Beaudry et al.
(2011) conclude that optimism shocks play a pivotal role in economic fluctuations and Mountford
and Uhlig (2009) conclude that deficit-financed tax cuts are better for stimulating economic activity.
Researchers combine SVARs with sign and zero restrictions because they allow the identification to
remain agnostic with respect to the responses of key variables of interest. But this is just in theory.
In practice this has not been the case.

We show that the current implementation of these techniques does, in fact, introduce sign restric-
tions in addition to the ones specified in the identification — violating the proclaimed agnosticism.
The additional sign restrictions generate biased impulse response functions and artificially narrow
confidence intervals around them. Hence, the researcher is going to be confident about the wrong
thing. The consequence is that Beaudry et al. (2011) and Mountford and Uhlig (2009) are not as
agnostic as they pretend to be and that their positive and sharp conclusions are misleading and due
to these additional sign restrictions. The heart of the problem is that none of the existing algorithms
correctly draws from the posterior distribution of structural parameters conditional on the sign and
zero restrictions. In this paper we solve this problem by providing an algorithm that draws from the
correct posterior, hence not introducing any additional sign restrictions. Absent the additional sign
restrictions, it is hard to support the claim that either optimism shocks are an important source of
business cycle fluctuations or deficit-financed tax cuts work best at improving output. Once you are
truly agnostic, Beaudry et al.’s (2011) and Mountford and Uhlig’s (2009) main findings disappear.

In particular, we present an efficient algorithm for inference in SVARs identified with sign and zero
restrictions that properly draws from the posterior distribution of structural parameters conditional
on the sign and zero restrictions. We extend the sign restrictions methodology developed by Rubio-
Ramirez et al. (2010) to allow for zero restrictions. As was the case in Rubio-Ramirez et al. (2010), we
obtain most of our results by imposing sign and zero restrictions on the impulse response functions, but
our algorithm allows for a larger class of restrictions. Two properties of the problem are relevant: (1)
the set of structural parameters conditional on the sign and zero restrictions is of positive measure in

the set of structural parameters conditional on the zero restrictions and (2) the posterior distribution



of structural parameters conditional on the zero restrictions can be obtained from the product of the
posterior distribution of the reduced-form parameters and the uniform distribution, with respect to
the Haar measure, on the set of orthogonal matrices conditional on the zero restrictions. Drawing
from the posterior of the reduced-form parameters is a well-understood problem. Our key theoretical
contribution is to show how to efficiently draw from the uniform distribution with respect to the Haar
measure on the set of orthogonal matrices conditional on the zero restrictions. This is the crucial step
that allows us to draw from the posterior distribution of structural parameters conditional on the sign
and zero restrictions and that differentiates our paper from existing algorithms.

Currently, the most widely used algorithm is Mountford and Uhlig’s (2009) penalty function ap-
proach (PFA). Instead of drawing from the posterior distribution of structural parameters conditional
on the sign and zero restrictions, the PFA selects a single value of the structural parameters by minimiz-
ing a loss function. We show that this approach has several drawbacks that crucially affect inference.
First, the PFA imposes additional sign restrictions on variables that are seemingly unrestricted —
violating the proclaimed agnosticism of the identification. The additional sign restrictions bias the im-
pulse response functions. Indeed, for a class of sign and zero restrictions we can even formally recover
the additional sign restrictions. Second, because it chooses a single value of structural parameters,
the PFA creates artificially narrow confidence intervals around the impulse response functions that
severely affect inference and the economic interpretation of the results.

We show the capabilities of our algorithm and the problems of the PFA by means of two applications
previously analyzed in the literature using the PFA. The first application is related to optimism shocks.
The aim of Beaudry et al. (2011) is to provide new evidence on the relevance of optimism shocks as an
important driver of macroeconomic fluctuations. In their most basic identification scheme, the authors
claim to be agnostic about the response of consumption and hours to optimism shocks. Beaudry et al.
(2011) conclude that optimism shocks are clearly important for explaining standard business cycle
type phenomena because they increase consumption and hours. Unfortunately, we show that the
positive and sharp responses of consumption and hours reported in Beaudry et al. (2011) are due to
the additional sign restrictions on these variables introduced by the PFA that bias impulse response
functions and create artificially narrow confidence intervals around them. Since these restrictions on
consumption and hours were not part of the identification scheme, the PFA contravenes the proclaimed
agnosticism of the identification. Once you are truly agnostic using our methodology, Beaudry et al.’s
(2011) conclusion is very hard to support.

The second application identifies fiscal policy shocks, as in Mountford and Uhlig (2009), in order to
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analyze the effects of these shocks on economic activity. Government revenue and government spending
shocks are identified by imposing sign restrictions on the fiscal variables themselves as well as imposing
orthogonality to a business cycle shock and a monetary policy shock. The identification pretends to
remain agnostic with respect to the responses of output and other variables of interest to the fiscal
policy shocks. Mountford and Uhlig’s (2009) main finding is that deficit-financed tax cuts work best
among the different fiscal policies aimed at improving output. Analogously to Beaudry et al. (2011), the
PFA introduces additional sign restrictions on the response of output and other variables to fiscal policy
shocks, again conflicting with the proclaimed agnosticism of the identification strategy. As before, the
results obtained in Mountford and Uhlig (2009) are due to biased impulse response functions and the
artificially narrow confidence intervals around them created by the additional sign restrictions. Using
our truly agnostic methodology, we show that it is very difficult to endorse Mountford and Uhlig’s
(2009) results.

There is some existing literature that criticizes Mountford and Uhlig’s (2009) PFA using arguments
similar to the ones listed here. Baumeister and Benati (2010), Benati (2013), and Binning (2013)
propose alternative algorithms, failing to provide any theoretical justification that their algorithms, in
fact, draw from the posterior distribution of structural parameters conditional on the sign and zero
restrictions. Caldara and Kamps (2012) also share our concerns about the PFA, but providing an
alternative algorithm is out of the scope of their paper. In an environment with only sign restrictions,
Baumeister and Hamilton (2013) highlight some related problems and advocate for using priors that
reflect not just sign restrictions but also the relative plausibility of different parameter values within
the allowable set.

Not only does our method correctly draw from the posterior distribution of structural parameters
conditional on the sign and zero restrictions but, at least for the two applications studied in this paper,
it is also much faster than the PFA. Our methodology is between three and ten times faster than the
PFA, depending on the number of sign and zero restrictions. It is also important to note that our
approach can be embedded in a classical or Bayesian framework, although we follow only the latter.
In addition, we wish to state that the aim of this paper is neither to dispute nor to challenge SVARs
identified with sign and zero restrictions. In fact, our methodology preserves the virtues of the pure
sign restriction approach developed in the work of Faust (1998), Canova and Nicol6 (2002), Uhlig
(2005), and Rubio-Ramirez et al. (2010). Instead, our findings related to optimism and fiscal policy
shocks just indicate that the respective sign and zero restrictions used by Beaudry et al. (2011) and

Mountford and Uhlig (2009) are not enough to accurately identify these particular structural shocks.
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It seems that more restrictions are needed in order to identify such shocks, possibly zero restrictions.
Finally, by characterizing the set of structural parameters conditional on sign and zero restrictions,
our key theoretical contribution will also be of interest to the existing literature such as Faust (1998)
and Barsky and Sims (2011), who identify shocks by maximizing the forecast error variance of certain
variables subject to either sign or zero restrictions.

The paper is organized as follows. Section 2 shows some relevant results in the literature that we
will later demonstrate to be wrong. Section 3 presents the methodology. It is here where we describe
our theoretical contributions and algorithms. Section 4 offers some examples. Section 5 describes
the PFA and highlights its shortcomings. Section 6 presents the first of our applications. Section 7

presents the second application. Section 8 concludes.

2 Being Confident About the Wrong Thing

Beaudry et al. (2011) claim to provide evidence on the relevance of optimism shocks as an important
driver of macroeconomic fluctuations by exploiting sign and zero restrictions using the PFA. More
details about their work will be given in Section 6. At this point it suffices to say that in their
most basic model, Beaudry et al. (2011) use data on total factor productivity (TFP), stock price,
consumption, the real federal funds rate, and hours worked. In a first attempt, they identify optimism
shocks as positively affecting stock prices but being orthogonal to TFP at horizon zero. Hence, the
identification scheme is agnostic about the response of both consumption and hours to optimism
shocks. Figure 1 replicates the first block of Figure 1 in Beaudry et al. (2011). As can be seen, both
consumption and hours worked respond positively and strongly to optimism shocks. The results are
also quite definite because of the narrow confidence intervals.

If right, this figure will clearly endorse the work of those who think that optimism shocks are
relevant for business cycle fluctuations. But this is not the case. In Section 6 we will show that
Figure 1 is wrong. The PFA introduces additional sign restrictions on consumption and hours; hence,
Figure 1 does not correctly reflect the impulse response functions (IRF's) associated with the agnostic
identification scheme described above. When compared with the correctly computed IRFs (as we will
do in Section 6), Figure 1 reports upward-biased responses of consumption and hours worked with
artificially narrow confidence intervals. In that sense, Beaudry et al. (2011) are confident about the
wrong thing.

Mountford and Uhlig (2009) analyze the effects of fiscal policy shocks using SVARs identified with



Adjusted TFP Stock Price

Figure 1: Beaudry et al. (2011) Identification 1: Five-Variable SVAR

sign restrictions. Using data on output, consumption, total government spending, total government
revenue, real wages, investment, the interest rate, adjusted reserves, prices of crude materials, and
on output deflator, they identify a government revenue shock and a government spending shock by
imposing sign restrictions on the fiscal variables themselves as well as imposing orthogonality to a
generic business cycle shock and a monetary policy shock. No sign restrictions are imposed on the
responses of output, consumption, and investment to fiscal policy shocks. Thus, the identification
remains agnostic with respect to the responses of these key variables of interest to fiscal policy shocks.
Using the identified fiscal policy shocks, they report many different results that will be analyzed in
Section 7. At this stage we want to focus on their comparison of fiscal policy scenarios. They compare
deficit-spending shocks, where total government spending rises by 1 percent and total government
revenue remains unchanged during the four quarters following the initial shock, with deficit-financed
tax cut shocks, where total government spending remains unchanged and total government revenue

falls by 1 percent during the four quarters following the initial shock. More details about the fiscal



policy scenarios will be provided in Section 7.
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Figure 2: Mountford and Uhlig (2009) Cumulative Fiscal Multipliers

Figure 2 replicates Figure 13 in Mountford and Uhlig (2009). The figure shows that the median
cumulative discounted IRF of output to a deficit-spending shock becomes negative after a few periods,
while it is always positive in the case of a deficit-financed tax cut shock. It also shows narrow confidence
intervals. If right, this figure will strongly support the work of those who think that deficit-financed
tax cuts work best to improve output. But this is not the case. In Section 7 we will show that
Figure 2 is, indeed, wrong. As is the case with optimism shocks, the PFA introduces additional sign
restrictions on the response of output to the different fiscal policy shocks analyzed; hence, Figure 2
does not correctly reflect the IRFs associated with the agnostic identification scheme described above.
When compared with the correctly computed IRFs (as we will do in Section 7), Figure 2 reports biased
impulse response functions and artificially narrow confidence intervals. In that sense, Mountford and

Uhlig (2009) are also confident about the wrong thing.
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3 Our Methodology

This section is organized into three parts. First, we describe the model. Second, we review the efficient
algorithm for inference using sign restrictions on IRFs developed in Rubio-Ramirez et al. (2010). Third,
we extend this algorithm to also allow for zero restrictions. As mentioned, the algorithm proposed by
Rubio-Ramirez et al. (2010) and our extension can be embedded in a classical or Bayesian framework.

In this paper we follow the latter.

3.1 The Model

Consider the structural vector autoregression (SVAR) with the general form, as in Rubio-Ramirez

et al. (2010)

p
yiAo = Zyg_eAg +c4e for1<t<T, (1)
=1

where y; is an n x 1 vector of endogenous variables, €, is an n x 1 vector of exogenous structural shocks,
A, is an n X n matrix of parameters for 0 < ¢ < p with Ay invertible, ¢ is a 1 X n vector of parameters,
p is the lag length, and T is the sample size. The vector €;, conditional on past information and the
initial conditions yy, ..., ¥1-p, is Gaussian with mean zero and covariance matrix I,,, the n x n identity

matrix. The model described in equation (1) can be written as
ViAo =xA  +¢e, for 1 <t<T, (2)

where A/, = [ A - A; c } and x; = [ Y, - ygfp 1 | for 1 <t <T. The dimension of

A is m x n, where m = np + 1. The reduced-form representation implied by equation (2) is
yi=xB+u; forl<t¢t<T, (3)

where B = AL AL u) = €/A;Y, and E[uu)] = ¥ = (AgA})~". The matrices B and 3 are the
reduced-form parameters, while Ay and A, are the structural parameters.

Most of the literature imposes restrictions on the IRFs. As we will see by the end of this section,
the theorems and algorithms described in this paper allow us to consider a more general class of
restrictions. In any case, we will use IRFs to motivate our theory. Thus, we now characterize them.
We begin by introducing IRFs at finite horizons and then do the same at the infinite horizon. Once

the IRFs are defined, we will show how to impose sign restrictions. In the finite horizon case, we have



the following definition.

Definition 1. Let (Ao, Ay) be any value of structural parameters, the IRF of the i-th variable to the

j-th structural shock at finite horizon h corresponds to the element in row i and column j of the matrix

Ly, (Ag, Ay) = (AJTT'FMI)

where -~ ~ -
AlAal L, 0 I,
: R 0
F = and J =
Ap,lAgl o --- I,
AA;Y 0 - 0 0

In the infinite horizon case, we assume the i-th variable is in first differences.

Definition 2. Let (Ag, A) be any value of structural parameters, the IRF of the i-th variable to the
j-th structural shock at the infinite horizon (sometimes called the long-run IRF) corresponds to the

element in row i and column j of the matriz

-1
p

Lo (Ag,Al) = (Ag —ZA;> .
/=1

It is important to note that Ly, (A¢Q, A, Q) = L, (Ag, A1) Q for 0 < h < o0 and Q € O(n),

where O(n) denotes the set of all orthogonal n x n matrices.

3.2 Algorithm for Sign Restrictions

Let us assume that we want to impose sign restrictions at several horizons, both finite and infinite. It
is convenient to stack the IRF's for all the relevant horizons into a single matrix of dimension k x n,
which we denote by f (Ag, A). For example, if the sign restrictions are imposed at horizon zero and

infinity, then
LO (AOa A-‘r)
Loo (A07 A+)

f (Ao, Ay) =

where k = 2n in this case.



Sign restrictions on those IRFs can be represented by matrices S; for 1 < j < n, where the number
of columns in S; is equal to the number of rows in f (Ag, A;). Usually, S; will be a selection matrix
and thus will have exactly one non-zero entry in each row, though the theory will work for arbitrary
S;. If the rank of S; is s;, then s; is the number of sign restrictions on the IRFs to the j-th structural
shock. The total number of sign restrictions will be s = Z;L:1 s;. Let e; denote the j-th column of I,,,

where 1, is the identity matrix of dimension n x n.

Definition 3. Let (Ag, Ay) be any value of structural parameters. These parameters satisfy the sign

restrictions if and only if S;f (Ao, A+)e; >0, for 1 < j <n.

From equation (2), it is easy to see that if (Ag, A ) is any set of structural parameters and Q is any
element of O(n), the set of orthogonal matrices, then (A, A.) and (AoQ, A, Q) are observationally
equivalent. It is also well known, e.g., Geweke (1986), that a SVAR with sign restrictions is not
identified, since for any (Ao, A, ) that satisfy the sign restrictions, (AoQ, A, Q) will also satisfy the
sign restrictions for all orthogonal matrices Q sufficiently close to the identity. Therefore, the set of
structural parameters conditional on the sign restrictions will be an open set of positive measure in the
set of all structural parameters. This suggests the following algorithm for sampling from the posterior

of structural parameters conditional on the sign restrictions.
Algorithm 1.
1. Draw (Ag, A) from the unrestricted posterior.
2. Keep the draw if the sign restrictions are satisfied.
3. Return to Step 1 until the required number of draws from the posterior of structural parameters

conditional on the sign restrictions has been obtained.

By unrestricted posterior we mean the posterior distribution of all structural parameters before
any identification scheme is considered. The only obstacle to implementing Algorithm 1 is an efficient
technique to accomplish the first step. In the next subsection we develop a fast algorithm that produces

independent draws from the unrestricted posterior.



3.3 Draws from the Unrestricted Posterior

The algorithm developed in this section will require draws of orthogonal matrices from the uniform
distribution with respect to the Haar measure on O(n).! Faust (1998), Canova and Nicol6 (2002), Uhlig
(2005), and Rubio-Ramirez et al. (2010) propose algorithms to draw from that distribution. However,
Rubio-Ramirez et al.’s (2010) algorithm is the only computationally feasible one for moderately large

SVAR systems (e.g., n > 4).2 Rubio-Ramirez et al.’s (2010) results are based on the following theorem.

Theorem 1. Let X be an n x n random matriz with each element having an independent standard
normal distribution. Let X = QR be the QR decomposition of X.2 The random matriz Q has the

uniform distribution with respect to the Haar measure on O(n).
Proof. The proof follows directly from Stewart (1980). ]

With this result in hand, we develop an efficient algorithm to obtain independent draws from the
unrestricted posterior using draws from the posterior of the reduced-form parameters. If the prior on
the reduced-form is from the family of multivariate normal inverse Wishart distributions, then the
posterior will be from the same family and there are efficient algorithms for obtaining independent
draws from this distribution. Such priors are called conjugate. The popular Minnesota prior will be
from this family. However, we need draws from the unrestricted posterior, not from the posterior of
reduced-form parameters. We now show that there is a way to convert draws from the posterior of
the reduced-form parameters, together with a draw from the uniform distribution with respect to the
Haar measure on O(n), to draws from the unrestricted posterior.

Let g denote the mapping from the structural parameters to the reduced-form parameters given
by g(Ag, A,) = (A+A5 L (AOA{))_l). Let h be any continuously differentiable mapping from the set
of symmetric positive definite n x n matrices into the set of n x n matrices such that A(X)'h(X) = X.
For instance, h(X) could be the Cholesky decomposition of X such that h(X) is upper triangular with
positive diagonal. Alternatively, h(X) could be the square root of X, which is the unique symmetric
and positive definite matrix Y such that YY = Y'Y = X. Using h, we can define a function h from
the product of the set of reduced-form parameters with the set of orthogonal matrices into the set of

structural parameters by (B, X, Q) = ((X)'Q,BA(X)'Q). Note that g(h(B, X, Q)) = (B, X) for

!The Haar measure is the unique measure on O(n) that is invariant under rotations and reflections such that the
measure of all of O(n) is one. See Krantz and Parks (2008) for more details.

2See Rubio-Ramirez et al. (2010) for details.

3With probability one the random matrix X will be non-singular and so the QR decomposition will be unique if the
diagonal of R is normalized to be positive.
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every Q € O(n). The function A will be continuously differentiable with a continuously differentiable
inverse.

Given a prior density m on the reduced-form parameters, together with the uniform distribution
with respect to the Haar measure on O(n), we can use h to draw from the unrestricted posterior. At
the same time, h induces a prior on the unrestricted structural parameters. The induced prior density
will be

# (Ao, AL) =7 (B,X) ‘det (iz’ (B, 3, Q)) ‘_1 ,

where (B, 2, Q) = h™*(Ag, A,). Though we will not explicitly use it,

n(n+1) _2n4m41
- 2

)det (i/ (B,E,Q))) — 25 et ()|

The following theorem formalizes the above argument.

Theorem 2. Let m be a prior density on the reduced-form parameters. If (B,X) is a draw from
the reduced-form posterior and Q is a draw from the uniform distribution with respect to the Haar
measure on O(n), then fL(B, 3,Q) is a draw from the unrestricted posterior with respect to the prior

# (Ao, Ay) =7 (B, X) |det (ﬁ’ (B,XQ)) B

Proof. The proof follows from the chain rule and the fact that if (Ag,A;) = E(B, 3.,Q), then the
likelihood of the data given the structural parameters (Ag, A ) is equal to the likelihood of the data

given the reduced-form parameters (B, X). O

The following algorithm shows how to use this theorem together with Algorithm 1 to independently

draw from the posterior of structural parameters conditional on the sign restrictions
Algorithm 2.
1. Draw (B, X) from the posterior distribution of the reduced-form parameters.

2. Use Theorem 1 to draw an orthogonal matrix Q from the uniform distribution with respect to the

Haar measure on O(n).

3. Because of Theorem 2, h(B, %, Q) = (M(Z)"'Q,Bh(X) Q) will be a draw from the unrestricted

posterior.

4. Keep the draw if S; f (W(X)'Q,Bh(X)"'Q)e; > 0 are satisfied for 1 < j < n.
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5. Return to Step 1 until the required number of draws from the posterior of structural parameters

conditional on the sign restrictions has been obtained.

As mentioned above, as long as the reduced-form prior is multivariate normal inverse Wishart,
we have an efficient algorithm to obtain the independent draws required in step one of Algorithm 2.
Theorem 1 gives an efficient algorithm to obtain the independent draws required in step two and step
three is justified by Theorem 2. In practice, h(X) is normally the Cholesky decomposition 3 such
that h(X) is upper triangular with positive diagonal. In any case, Theorem 2 also shows that other

mappings are possible.

3.4 A Recursive Formulation of Theorem 1

At this point it is useful to understand how Theorem 1 works, and more important, how it can be
implemented recursively. Let X = QR be the QR decomposition of X and let x; = Xe; and q; = Qe;

for 1 < j <n. The q; can be obtained recursively using the Gram-Schmidt process, which is given by

o = (In - Qle}q) Xj _ N; 1N x; ~ N, , N} _1x; for1<j<n
D@ = Q@) )l NNl INGx | S
where || || is the Euclidean metric, Q;_1 = [ql 01]'—1}’ and N,_; is any n x (n — j + 1) matrix

whose columns form an orthonormal basis for the null space of Q;fl.‘l We follow the convention
that Qo is the n x 0 empty matrix, QoQ is the n x n zero matrix, and Ny is the n x n identity
matrix. Geometrically, q; is the projection of x; onto the null space of Q};_; normalized to be of unit
length. Alternatively, N’_,x; is a standard normal draw from R*/*' and N;_,x;/ || N/_;x; || is
a draw from the uniform distribution on the unit sphere centered at the origin in R"~*! which is
denoted by S™7J. Because the columns of N;_; are orthonormal, multiplication by N;_; is a rigid
transformation of R»7*! into R™. From this alternative geometric representation, one can see why
Theorem 1 produces uniform draws from O(n). For 1 < j < n, the vector q;, conditional on Q,_1,
is a draw from the uniform distribution on S™ 7. While it is more efficient to obtain Q in a single
step via the QR decomposition, the fact that it can be obtained recursively will be of use when there

are zero restrictions.® Furthermore, note that the recursive formulation of Theorem 1 allows a faster

4The formula just described to obtain q; recursively for 1 < j < n implicitly imposes the normalization that the
diagonal of R is positive.

SWhile draws from O(n) can be obtained recursively by drawing from S"~7 for 1 < j < n, O(n) is not topologically
equivalent to a product of spheres, i.e., there does not exist a continuous bijection from O(n) to H;-lzl Sn=i,
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implementation of Algorithm 2 in those cases in which the researcher is interested in identifying less

than n shocks.

3.5 Algorithm with Sign and Zero Restrictions

Let us now assume that we also want to impose zero restrictions at several horizons, both finite and
infinite. Similar to the case of sign restrictions, we use the function f (A, A) to stack the IRFs at
the desired horizons. The function f (Ag, A,) will contain IRFs for both sign and zero restrictions.
Zero restrictions can be represented by matrices Z; for 1 < j < n, where the number of columns in
Z; is equal to the number of rows in f (Ag, A;). If the rank of Z; is z;, then z; is the number of zero

restrictions associated with the j-th structural shock. The total number of zero restrictions will be
z=30 %

Definition 4. Let (Ag, Ay) be any value of structural parameters. These parameters satisfy the zero

restrictions if and only if Z;f (Ag,A;)e; =0 for 1 < j <n.

We can no longer use Algorithm 1 for sampling from the posterior of structural parameters condi-
tional on the sign and the zero restrictions, since the set of structural parameters conditional on the
zero restrictions will be of measure zero in the set of all structural parameters. As we show below, as
long as there are not too many zero restrictions, we will be able to directly obtain draws of structural
parameters conditional on the zero restrictions. This is important for the same reasons used to moti-
vate Algorithm 1. The set of structural parameters conditional on the sign and the zero restrictions
will be of positive measure in the set of structural parameters conditional on the zero restrictions.
Thus, we will be able to use the following algorithm for sampling from the posterior of structural

parameters conditional on the sign and the zero restrictions.

Algorithm 3.
1. Draw (Ag, A) from the posterior of structural parameters conditional on the zero restrictions.
2. Keep the draw if the sign restrictions are satisfied.

3. Return to Step 1 until the required number of draws from the posterior of structural parameters

conditional on the sign and the zero restrictions has been obtained.
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As was the case before, the only obstacle to implementing Algorithm 3 is an efficient technique to
accomplish the first step. We now present an algorithm that produces independent draws from the

posterior of structural parameters conditional on the zero restrictions.

3.6 Draws from the Posterior Conditional on the Zero Restrictions

From Definition 3.5 it is easy to see that the difficulty comes from the fact that the zero restrictions
impose non-linear constraints on the structural parameters (Ag, A ). In this section we transform these
non-linear constraints on the structural parameters (Ag, A ) into linear constraints on the orthogonal
matrix Q. We first need to show that for any value of the structural parameters (Ag, A,), we can
find an orthogonal matrix Q such that (A¢Q, A Q) satisfies the zero restrictions. Because f has the
property that f(A¢Q, A, Q) = f(Ao, A, )Q, zero restrictions on the IRFs of observationally equivalent
structural parameters can be converted into linear restrictions on the columns of the orthogonal matrix

Q. To see this, note that

Z;f(AvQ, A Q)e; =7Z;f (Ag,Ay) Qe; =7;f (Ao, Ay)qj

for 1 < j < n. Therefore, the zero restrictions associated with the j-th structural shock can be ex-
pressed as linear restrictions on the j-th column of the orthogonal matrix Q. Thus, the zero restrictions

will hold if and only if
Zif (Ao,Ay)q; =0 (4)

for 1 < j < n. In addition to equation (4), we need the resulting matrix Q to be orthonormal. This
condition imposes extra linear constraints on the columns of Q.

Using these two insights, the next theorem shows when and how, given any value of the structural
parameters (Ag, Ay), we can find an orthogonal matrix Q such that (AyQ, A, Q) satisfies the zero

restrictions.

Theorem 3. Let (Ag, A) be any value of structural parameters. The structural parameters (AoQ, A+ Q),

where Q is orthogonal, satisfy the zero restrictions if and only if || q; ||=1 and

R;(A¢,A1)q; =0, (5)
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for 1 < j <mn, where
Z]f <A07A+>

/
j—1

R; (A¢,Ay) =

Furthermore, if the rank of Z; is less than or equal to n — j, then there will be non-zero solutions of

equation (5) for all values of Q;_;.

Proof. The first statement follows easily from the fact that (AoQ, A Q) satisfies the zero restrictions
if and only if Z;f (Ao,At)q; = 0 and the matrix Q is orthogonal if and only if || q; |[[= 1 and

% 19; = 0. The second statement follows from the fact that the rank of R; (A, A) is less than or
equal to z; +j — 1. Thus, if z; <n — j, then the rank of R; (Ay, A;) will be strictly less than n and

there will be non-zero solutions of equation (5). O

Whether there will be non-zero solutions of equation (5) clearly depends on the ordering of the
equations (columns) of the original system, which is arbitrary. We shall only consider zero restrictions
such that the equations of the original system can be ordered so that z; < n — j. Because, when
considering zero restrictions together with sign restrictions, one usually only wants to have a small
number of zero restrictions, this condition will almost always be satisfied in practice. If it is the case
that the system can be ordered so that z; < n—j, then Theorem 3 implies that for any value (Ag, A ) of
the structural parameters one can always find an orthogonal matrix Q such that (AoQ, A, Q) satisfies
the zero restrictions. This implies that zero restrictions impose no constraints on the reduced-form
parameters but will impose constraints on the orthogonal matrix Q.

Next, we show how to use the results in Theorem 3 to, given a value of the structural parameters
(Ag,A), obtain draws from the uniform distribution with respect to the Haar measure on O(n)

conditional on (A¢Q, A, Q) satisfying the zero restrictions.

Theorem 4. Let 1 < j < n, and let Z; represent zero restrictions with the equations of the system
giwen by (1) ordered so that z; < n — j. Let (Ag, A}) be any value of the structural parameters. Let
Q be obtained as follows.

1. Let 53 =1.
2. Find o matriz N,;_; whose columns form an orthonormal basis for the null space of R;j(Ag, AL).

3. Draw x; from the standard normal distribution on R™.
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4. Let q; = Ny (N} x;/ | NG ;% |[).9
5. If 7 = n stop; otherwise, let 3 = j 4+ 1 and move to Step 2.

The random matriz Q has the uniform distribution with respect to the Haar measure on O(n) condi-

tional on (A¢Q, A Q) satisfying the zero restrictions.

Proof. By Theorem 3, Q will be orthogonal and (AyQ, A Q) will satisfy the zero restrictions. Let
n; be the number of columns in N;_;. For almost all (Ag,A}), nj =n—j—2 +1>1. So, qj,
conditional on Q;_1, Ap, and A, is a draw from the uniform distribution on a unit sphere centered
at the origin whose dimension is n — j — z;. Thus the distribution of Q will be uniform with respect

to the Haar measure on O(n) conditional on (AQ, A, Q) satisfying the zero restrictions. O

It should be clear from Theorem 4 that for each (Ag, A, ) there are many orthogonal matrices Q
such that (A¢Q, A, Q) satisfies the zero restrictions and that the particular orthogonal matrix Q to
be drawn will depend on the particular draw of x; for 1 < j <n.

The fact that Theorem 4 shows how to obtain draws from the uniform distribution with respect to
the Haar measure on O(n) conditional on the zero restrictions is the key theoretical contribution of this
paper. This contribution allows us to obtain posterior draws of the structural parameters conditional

on the zero restrictions.

Theorem 5. Let m be a prior density on the reduced-form parameters. If (B,X) is a draw from
the reduced-form posterior and Q is a draw from the uniform distribution with respect to the Haar
measure on O(n) conditional on iL(B, 3,Q) = (M(X)'Q,Bh(X)71Q) satisfying the zero restrictions
as in Theorem 4, then B(B, 32, Q) is a draw from the posterior of the structural parameters with respect

. -1
to the prior m(Ag,A,) = m (B, ) ‘det (h’ (B, X, Q))‘ , conditional on the zero restrictions.

Proof. The proof follows from the chain rule and the fact that if (Ag,A;) = fL(B, 3. Q), then the
likelihood of the data given the structural parameters (Ag, A ) is equal to the likelihood of the data

given the reduced-form parameters (B, X). O

Combining Theorem 4 and Theorem 5 with Algorithm 3, we obtain the following algorithm for
making independent draws from the posterior distribution conditional on the sign and zero restrictions

holding.

6 Alternatively, we could draw y; from the standard normal distribution on R and get q; = N;_1y;/ || y; ||, where
n; is the number of columns in N;_;, which is a positive number. This implementation will result in an even faster
procedure.
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Algorithm 4.
1. Draw (B, X) from the posterior distribution of the reduced-form parameters.

2. Use Theorem 4 to draw an orthogonal matriz Q such that h (B, %, Q) = (h(2)"'Q,Bh(X)"'Q)

satisfies the zero restrictions.
3. Keep the draw if S; f(h(X)7'Q,Bh(X)'Q)e; > 0 are satisfied for 1 < j < n.

4. Return to Step 1 until the required number of draws from the posterior distribution conditional

on the sign and zero restrictions has been obtained.

From Algorithm 4 it is easy to see that, for each (B, ), there is a whole distribution of IRFs such
that the restrictions hold. This observation is essential in interpreting the results in Sections 6 and
7. As was the case before, in practice, h(X) is normally the Cholesky decomposition 3 such that
h(3) is upper triangular with positive diagonal. In any case, Theorem 5 shows that other mappings
are possible. Finally, the recursive structure of Theorem 4 allows for the recursive implementation of
Algorithm 4, which increases efficiency for cases in which the number of shocks to be identified is lower

than the number of variables.

3.7 Efficiency and Normalization

Because the q;’s that form the orthogonal matrix Q in step 2 of Algorithm 4 are obtained recursively
when applying Theorem 4, it is possible to check if the sign restrictions are satisfied as we are drawing
them. This allows us to combine steps 2 and 3 in Algorithm 4 and have an early exit back to step 1 as
soon as we have a draw of q; that does not satisfy S; f (h(X)~!, Bh(X)"!)q; > 0. In larger problems
in which we can order the equations so that those shocks that impose the highest number of sign
restrictions on IRFs appear first, this modification can result in greater efficiency.

In implementing this modification, it is critical that upon finding a q; that violates the sign
restrictions, one exits back to step 1 and obtains a new draw of the reduced-form parameters. It is
tempting to implement the algorithm by simply making draws of q; until we find one that satisfies
the sign restrictions. However, this will usually lead to draws from the incorrect distribution. The
easiest way to see this is to note that some draws of the reduced-form parameters may have large sets

of orthogonal Q that satisfy both the zero and sign restrictions, while other reduced-form parameters
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may have small sets of orthogonal Q that satisfy both the zero and sign restrictions.” This difference
should be reflected in the posterior draws, but if one draws q; until one is accepted, this will not be
true.

While it is not permissible to draw orthogonal matrices Q until acceptance, it is permissible to
draw a fixed number of orthogonal matrices Q for each reduced-form draw and then keep all that
satisfy the sign restrictions. However, because drawing from the reduced-form parameters is usually
very efficient, it is often best to draw one orthogonal matrix Q for each reduced-form draw. One
instance in which it is always more efficient to make multiple draws of the orthogonal matrix Q is in
the case of normalization.

If for the j-th shock there are no sign restrictions, then any q; will trivially satisfy the sign
restrictions. In this case, if q; is the draw of the j-th column of the orthogonal matrix Q, then both q;
and —q; will satisfy the sign restrictions. If for the j-th shock there is exactly one sign restriction, then
for any q; either q; or —q; will satisfy the sign restriction. In this case, if q; is the draw of the j-th
column of the orthogonal matrix Q and q; does not satisfy the sign restriction, then —q,; will. If for
the j-th shock there is more than one sign restriction, then it may be the case that neither q; nor —q;
will satisfy the sign restrictions. In this case, if q; is the draw of the j-th column of the orthogonal
matrix Q and q; does not satisfy the sign, then —q; may or may not satisfy the sign restrictions.
Nevertheless, it will always improve efficiency to check both q; and —q; against the sign restrictions
and keep all that satisfy the restrictions. Furthermore, the more shocks there are with zero or one sign
restriction, the greater the efficiency gains.

If there are no sign restrictions on the j-th shock, and no additional normalization rule is added,
we say that the shock is unnormalized. Unnormalized shocks will always have IRFs with distributions
that are symmetric about zero. Thus, if we are interested in making inferences about an IRF, then the
shock associated with such an IRF should always be normalized. A single sign restriction on a shock is
a normalization rule. See Waggoner and Zha (2003) for a discussion of normalization in SVAR models
and suggestions for a generic normalization rule. Finally, it is important to remember that, while it
is true that normalization rules do not change the statistical properties of the reduced-form, it is the

case that different normalization rules can lead to different economic interpretations.

"This is very different from zero restrictions only. For any reduced-form draw, the set of orthogonal Q that satisfies
only the zero restrictions lies on a unit sphere centered at the origin of dimension n — j — z;, which are all of the same
size.
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3.8 A General Class of Restrictions

It is worth noting that although we have used the function f (Ag, A) to stack the IRFs, the theo-
rems and algorithms in this paper work for any f (A, A, ) that satisfies the conditions described in
Rubio-Ramirez et al. (2010). Hence, our theory works for any f (Ao, A, ) that is admissible, regular,

and strongly regular as defined below.

Condition 1. The function f (Ao, A, ) is admissible if and only if for any Q € O(n), f (AoQ, A Q) =
f (A07 A+) Q

Condition 2. The function f (Ao, A, ) is regular if and only if its domain is open and the transfor-

mation is continuously differentiable with f’(Ag, A ) of rank kn.

Condition 3. The function f (Ap, A) is strongly regular if and only if it is regular and it is dense

in the set of k X n matrices.

This highlights the fact that our theorems and algorithms allow us to consider two additional classes
of restrictions (in addition to restrictions on IRFs). First, there are the commonly used linear re-
strictions on the structural parameters themselves (Ag, A, ). This class of restrictions includes the
triangular identification as described by Christiano et al. (1996) and the non-triangular identification
as described by Sims (1986), King et al. (1994), Gordon and Leeper (1994), Bernanke and Mihov
(1998), Zha (1999), and Sims and Zha (2006). Second, there are the linear restrictions on the Q’s
themselves. For instance, in the case of the latter restrictions, one can define f(Ag, A,) = I,. This

final class will be useful in comparing our methodology with some existing methods of inference.

4 Example

In this section we present an example to illustrate how to use our theorems and algorithms. We assume
some sign and zero restrictions and a draw from the posterior of the reduced-form parameters in order
to show how Algorithm 2 allows us to draw a Q conditional on the sign restrictions, while Algorithm 4
allows us to draw a Q conditional on the sign and the zero restrictions. Consider a four-variable SVAR

with one lag. The dimension and lag length of the SVAR are totally arbitrary. In this section, we will
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assume that h(X) is normally the Cholesky decomposition 3 such that h(X) is upper triangular with

positive diagonal.

4.1 A Draw from the Posterior of the Reduced-Form Parameters

Let the following B and ¥ be a particular draw from the posterior of the reduced-form parameters

Let the structural parameters be (A, A,) = (h(X)~!, Bh(X)™!), hence

2.9655 0.5911

0 0.5631
Ay =

0 0

0 0

[ 0.7577 0.7060
0.7431 0.0318
0.3922 0.2769

i 0.6555 0.0462

0.4387
0.3816
0.7655

0.7952

—1.4851 —0.0035
—0.1455 0.0321
—2.2906

2.6509

and X =

and A, =

0.0281
—0.0295
0.0029
0.0029

4.5201
4.4330
2.3397

3.9104

—0.0295 0.0029 0.0029
3.1850 0.0325 —0.0105
0.0067  0.0054
—0.0105 0.0054 0.1471

0.4033 —0.7034 |
78615 —0.5815
34710 1.3104
11.2867 —0.0604 |

Assume that we want to impose restrictions on the IRFs at horizon zero, two, and infinity. Hence, we

compute the respective IRFs and we stack them using function f (Ag, A,) as follows

20



0.1676 0 0 0
—0.1760  1.7760 0 0
0.0173  0.0200  0.0775 0
0.0173 —0.0042 0.0669  0.3772
0.1355  1.9867  0.1828  0.5375

LO(AU7 A-i-)
0.0259 1.3115 0.0828 0.2882
f(Ag,AL) = | Ly(Apg,AL) | =
0.1377 2.1813 0.2131 0.6144
Loo(Ag, Ay)

0.1069  2.0996  0.1989  0.6281
0.1091 —0.3783 —0.0847 —0.2523
—0.1170  1.2928 —0.0599 —0.2201
—0.0422 —0.7342 0.0006 —0.1695
—0.0575 —1.1662 0.0362  0.2577

4.2 The Restrictions

Assume that we want to impose a negative sign restriction at horizon two on the response of the third
variable to the second structural shock, a positive sign restriction at horizon two on the response of
the fourth variable to the second structural shock, a negative sign restriction at horizon zero on the
response of the second variable to the third structural shock, a positive sign restriction at horizon zero,
two, and infinity on the response of the first variable to the fourth structural shock, a zero restriction
at horizon zero on the response of the first and third variables to the first structural shock, and a zero
restriction at horizon infinity on the response of the fourth variable to the second structural shock.

These restrictions can be enforced using the matrices S; and Z; for 1 < j <n

0000O0O0-1000T00

Sy = S3=10 —-1000000O0O0O0O0],
0000O0O O 10000

100000O0O0OO0OO0O0O
S4=1000010000O000O0],Z=

000O0O0OO0O0OO0OTOO0O

1 0000O0OO0OO0OO0OO0OO0OO
001 0O00O0OO0OO0O0OO0@O0

andzzZ[OOOOOOOOOOOl]-
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Since there are no sign restrictions associated with the first structural shock, we do not need to specify

S1. Similarly, we do not specify Z3 and Z,.

4.3 Sign Restrictions

Let us start by discussing the sign restrictions that can be enforced using Algorithm 2. Assume that

we draw

0.8110 —1.8301 —1.0833 —1.7793 ]
—1.9581 0.5305 —1.5108 1.0477
1.6940  0.4499 —1.8539 1.0776
—0.6052 —0.2418 —1.8677 —0.1271

where each element is drawn from an independent standard normal distribution. Then, the orthogonal

matrix Q associated with the QR decomposition is

0.2917 —0.8809 —0.2226 0.2991
—0.7044 0.0644 —0.4764 0.5223
0.6094  0.4264 —0.6430 0.1828
—0.2177 —0.1953 —0.5569 —0.7774

Note that given Q the sign restrictions are satisfied since

/
Saf (Ao, Ay)qe = [ 0.0100 0.0032 ] > 0,S3f (Ao, A.)qz = 0.8068 > 0,

/
and Suf (Ao, Ay)qu = [ 0.0501 0.6937 0.0157} > 0.
Nevertheless, there is no reason to expect the zero restrictions to be satisfied for such Q. Indeed, in

this case they do not hold,

/
Zif (Ao, Al )ar = | 0.0489 0.0382 | #0, and Zyf (Ao, A;)qe = —0.0594 # 0.
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4.4 Sign and Zero Restrictions

We now illustrate how to find a Q that satisfies the sign and zero restrictions based on Algorithm 4.
Assume that in step 1 we use our draw from the posterior of the reduced-form parameters. Then, step

2 of Algorithm 4 is as follows.
1. Let j = 1.
2. Find a matrix N;_; whose columns form an orthonormal basis for the null space of R;(Aq, A})

/

0 —0.9682 0.2502 0
0 0 0 1.0000

No

!/

—0.9354 0.0464

3. Draw x; from the standard normal distribution on R”, x; = | 0.4395 —0.1190

4. Let q;

/
= Nj_1 (Nj_x;/ | N_yx []), an = [ 0 0.9018 —0.2330 0.3638 ] .
5. If j = n stop; otherwise, let 7 = j + 1 and move to step 2.

Thus, if we repeat these steps until j equals 5, we obtain the following matrices:

—0.2648  0.9609 0.1704 —0.0322 —0.0854
0.1095 —0.0053 0.2180 —0.3697 —0.4203
Nl = ,NQ = y and N3 =
0.9068  0.2271 0.9582 0.0188 —0.2913
0.3093  0.1586 0.0733 0.9284 0.8551
—0.6711 —0.5941 0.6713
1.5332 0.5901 —0.4112
X9 = , X3 = , and x4 =
—0.1836 —1.4499 0.7989
0.3509 —0.2632 —0.0868
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—0.9849 —0.1509 0.0854

0.0498 —0.0871 0.4203
Q2 = Q3 = , and q4 =

0.1651 —0.9130 0.2913

—0.0177 —0.3689 —0.8551

In this case, the sign restrictions also hold

!/
Sof (Ao, Ay)qe = [ 0.0027 0.0210 ] >0,S3f (Ag, A )qgs = 0.1281 > 0,

/
and Sy f (Ag, AL)qy = [ 0.0143 0.4401 0.0414 } > 0.

Clearly, the fact that the sign restrictions hold depends on the draw of x; for 1 < j < n.

5 The Mountford and Uhlig Methodology

In this section, we discuss the PFA with sign and zero restrictions developed by Mountford and Uhlig
(2009). First, we describe the algorithm. Second, we highlight how it selects one particular orthogonal
matrix Q instead of drawing from the conditional uniform distribution derived in Subsection 3.5. We
also analyze the consequences of this drawback. Third, we formally show how selecting a particular

orthogonal matrix Q imposes additional sign restrictions on variables that are seemingly unrestricted.

5.1 Penalty Function Approach with Sign and Zero Restrictions

Let (Ag, A+ ) be any draw of the structural parameters. Consider a case where the identification of the
J-th structural shock restricts the IRF of a set of variables indexed by I ; to be positive and the IRF
of a set of variables indexed by I;_ to be negative, where [; ; and [;_ C {0,1,...,n}. Furthermore,
assume that the restrictions on variable ¢ € I; | are enforced during H; ; ; periods and the restrictions
on variable ¢ € I; _ are enforced during H;;_ periods. In addition to the sign restrictions, assume
that the researcher imposes zero restrictions on the IRFs to identify the j-th structural shock. Let
Z; and f (Ao, A ) denote the latter. The PFA finds an orthogonal matrix Q* = [q; e q:] such

that the IRFs come close to satisfying the sign restrictions, conditional on the zero restrictions being
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satisfied, according to a loss function.® In particular, for 1 < j < n, this approach solves the following

optimization problem

(_l; = argminc‘;jes v (q,)

subject to
Z;f(Ag,A)@; =0 and Q) ,q; =0

where

H; _
e Lh A07A+ ) (e Lh AO,A+) )

g(w) = 100w if w > 0 and g(w) = w if w < 0, 0; is the standard error of variable i, Q}_, =
[q{ (_1;—1} for 1 <j <mn,and S = S°. We follow the convention that Q is the n x 0 empty
matrix.”

As before, if the prior on the reduced-form parameters is conjugate, then the posterior of the
reduced-form parameters will have the multivariate normal inverse Wishart distribution. As men-
tioned, there are very efficient algorithms for obtaining independent draws from this distribution. In
practice, the researcher will use the above algorithm where (Ag, A,) = (h(X)™!, BA(Z)™!) with h(X)
set equal to the Cholesky decomposition of ¥ such that i(3X) is upper triangular with positive diago-
nal. We will make this assumption throughout this section. This will also be the case in Section 6 and
Section 7. For ease of exposition, in the rest of the paper we will assume the notational convention

that T is equivalent to h(X). Hence, T is the Cholesky decomposion of 3.

5.2 Choosing a Single Orthogonal Matrix Q

As mentioned above, the set of structural parameters satisfying the sign and zero restrictions is of
positive measure on the set of structural parameters satisfying the zero restrictions. Conditional on a
draw from the posterior of the reduced-form parameters, our Algorithm 4 uses this result to draw from
the uniform distribution of orthogonal matrices conditional on the zero restrictions being satisfied.

The PFA abstracts from using the result. Instead, given any draw of the reduced-form parameters,

8See Mountford and Uhlig (2009) for details.
9To obtain o;, we compute the standard deviation of the OLS residuals associated with the i-th variable.
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(B, X), the penalty function chooses an optimal orthogonal matrix Q* = [q*{ e q;} € O(n) that

solves the following system of equations

Z;f (T7',BT~')q; =0 and

©X (€L, (T, BT ) )

ZZ(eLhT ,BT! ) ZZ(

iely h=0 9 iel_ h=0 i
for 1 < j < n where, in practice, it is also the case that (Ag,Ay) = (T~!,BT!) and VU (q}) is the
value of the loss function at the optimal value @j. Of course, the optimal orthogonal matrix that solves
the system of equations is the one that minimizes the loss function.

There are, at least, three possible issues with this approach. First, the optimal orthogonal matrix
Q* that solves the system of equations may be such that the sign restrictions do not hold. Second,
since only one orthogonal matrix is chosen, the researcher is clearly not considering all possible values
of the structural parameters conditional on the sign and zero restrictions. In the applications, we will
see how this issue greatly affects the confidence intervals. Third, it is easy to guess that by choosing
a single orthogonal matrix to minimize a loss function, we may be introducing bias on the IRFs and
other statistics of interest. Assume that the IRF's of two variables to a particular shock are correlated.
Then, by choosing a particular orthogonal matrix that maximizes the response of one of the variables
to the shock by minimizing the loss function, we are biasing the response of the other variable to
the same shock. The PFA behaves as if there were additional sign restrictions on variables that are
seemingly unrestricted and, hence, violates the agnosticism of any identification scheme being used.
In general, it is hard to formally prove such a claim because the optimal orthogonal matrix, Q*, is
a function of the draw of the reduced-form parameters; hence, in most cases, we will just be able to
look at the correlations between IRFs. These correlations are useful in understanding any bias that
one could find, but they fall short of being a formal argument. Fortunately, there are exceptions. In
the next subsection, we present a class of sign and zero restrictions where this claim can be formally
proved. For this class of restrictions, we will formally show how choosing a single orthogonal matrix
may impose additional restrictions on variables that are seemingly unrestricted. Nevertheless, even
without a formal proof for a general class of sign and zero restrictions, this is a very serious drawback

because the most attractive feature of sign restrictions is that one can be agnostic about the response of
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some variables of interest to some structural shocks. The applications will also highlight the dramatic

economic implications of this final issue.

5.3 Is the Penalty Function Approach Truly Agnostic?

We now formally show how the PFA imposes additional sign restrictions on variables that are seemingly
unrestricted. In this sense, the procedure is not truly agnostic and introduces bias in the IRFs and
other statistics of interest. As argued above, choosing a single orthogonal matrix minimizing a loss
function is likely to introduce some bias. Nevertheless, it is hard to formally prove this because the
optimal orthogonal matrix depends on a given draw of reduced-form parameters. Fortunately, there
is a class of sign and zero restrictions for which a formal proof is indeed possible because the optimal
orthogonal matrix is independent of the draw of the reduced-form parameters.

Consider a structural vector autoregression with n variables, and assume that we are interested in
imposing a positive sign restriction at horizon zero on the response of the second variable to the j-th
structural shock, and a zero restriction at horizon zero on the response of the first variable to the j-th
structural shock.'® Let (B, X) be any draw from the posterior of the reduced-form parameters. Then,
to find the optimal orthogonal matrix, Q*, we need to solve the following problem

*_

EIJ argminqj es v (q] )

subject to

e/Lo (T, BT ) q; =0 (6)

where

i) oSBT YA
Note that we are identifying only one structural shock; therefore, we do not need to impose the
orthogonality constraint between the different columns of Q*.

Equation (6) implies that the optimal G} has to be such that €/L, (T~',BT") g} = €|T'q} =

t1147; = 0, where the next to last equality follows because T’ is lower triangular. Thus, qi; =

0. To find the remaining entries of @, it is convenient to write e4Lo (T~', BT ') q; = e,T'g; =

10The order of the restrictions is not important. It is also the case that the results in this subsection hold when we
have several zero restrictions and a single sign restriction identifying a particular structural shock. We choose to present
the results for a single zero restriction to simplify the argument.
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Zizl ts2Qs,7, where the last equality follows because T’ is lower triangular. Substituting qj ; = 0

e’ -1 —1\5.
into e’2L0 (T_l, BT_l) q]' y1€ldS t22612,j. If —e’2L0 (T_l, BT_l) (_1]' > 07 then f (_ 2L0(T BT )(h) =

o2

eéLo(T’l,BT’l)qj

02

—100t2+§2’j3 otherwise, f <— ) = —t2+§2’j. Since qj ; = 0, and @ must belong to S,

it is straightforward to verify that the criterion function is minimized at q; = [ 010 --- 0 ],.
Thus, the PFA imposes additional zero restrictions on the orthogonal matrix Q. We now show that
these zero restrictions also imply additional sign restrictions on the responses of variables of interest
that are seemly unrestricted.

If the PFA were truly agnostic, it would impose no additional sign restrictions on the responses
of other variables of interest to the j-th structural shock. In our example, this is not the case; the
PFA introduces additional sign restrictions on the response of other variables to the j-th structural
shock. To illustrate the problem, note that we have not introduced explicit sign restrictions on any
variable except for the second. Nevertheless, the response at horizon zero of the i-th variable to the

J-th structural shock for ¢ > 2 does not depend on gj and it equals

eLo (T, BT ') @} =ty for all i > 2.

Thus, if the posterior distribution of to; differs from the posterior distribution of the IRF's, the PFA
will not recover the correct posterior distribution of the IRFs. In some cases, as we will show in our
applications, the posterior distribution of ty; is such that the event ty; > 0 (t2; < 0) occurs more
often than it should if correctly drawing from the posterior distribution of the IRFs. In that sense the
PFA may introduce additional sign restrictions on seemingly unrestricted variables.

Finally, it is worth noting that the result that the criterion function is minimized at

!/
61}72[0 10 --- o]

implies that, for this class of sign and zero restrictions, the Mountford and Uhlig (2009) methodology
can be seen as a particular case of ours. Why? Because having the j-th column of the orthogonal
matrix equal to [ 010 --- 0 ]/ can always be enforced by zero restrictions on the j-th column
of the orthogonal matrix. In Subsection 6.3.1 we will show how to implement those restrictions in the

case of optimism shocks.
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6 Application to Optimism Shocks

In this section, we use our methodology to study one application related to optimism shocks previously
analyzed in the literature by Beaudry et al. (2011) using the PFA. The aim of Beaudry et al. (2011)
is to contribute to the debate regarding the source and nature of business cycles. The authors claim
to provide new evidence on the relevance of optimism shocks as the main driver of macroeconomic
fluctuations using sign and zero restrictions to isolate optimism shocks. At least in their benchmark
identification scheme, Beaudry et al. (2011) want to be agnostic about the response of consumption
and hours worked to optimism shocks. As we show below, the problem is that, by using the PFA, they
are not being really agnostic about the response of these two variables.

After replicating their results, we repeat their empirical exercises using our methodology — that
truly respects the agnosticism of the identification scheme — to show how their main economic conclu-
sion substantially changes. While Beaudry et al. (2011) conclude that optimism shocks are associated
with standard business cycle type phenomena because they generate a simultaneous boom in output,
investment, consumption, and hours worked, we show that, using our truly agnostic methodology, it is
very hard to support such a claim. Moreover, they also find that optimism shocks account for a large
share of the forecast error variance (FEV) of output, investment, consumption, and hours worked
at several horizons. But again, once one uses our methodology such results are also substantially

weakened. We also report how our methodology is not only correct, but faster than the PFA.

6.1 Data and Identification Strategy

Beaudry et al. (2011) use two data sets. In the first one, they use data on TFP, stock price, con-
sumption, the real federal funds rate, and hours worked. In the second one, they add investment and

output. In both data sets, they consider the three identification strategies described in Table 1.

Identification 1 | Identification 2 | Identification 3

Adjusted TFP 0 0 0
Stock Price + + +
Consumption + +
Real Interest Rate +

Hours Worked
Investment
Output

Table 1: Identification Schemes Defined in Beaudry et al. (2011)
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Identification 1 is the benchmark, where optimism shocks (sometimes called bouts of optimism)
are identified as positively affecting stock prices and as being orthogonal to TFP at horizon zero.
Identification 2 adds a positive response of consumption at horizon zero as an additional restriction to
Identification 1. Finally, Identification 3 adds a positive response of the real interest rate at horizon
zero to Identification 2. Appendix 9.1 gives details on the priors and the data sets. Identification 1
is agnostic about the response of consumption and hours worked to optimism shocks. As we will see
below, the PFA will not respect this agnosticism.

Next, we map these identification strategies to the function f (Ag, A,) and the matrices Ss and Zs
necessary to apply our methodology. Since the sign and zero restrictions are imposed at horizon zero,
we have that f (Ao, A;) = Lo (Ao, Ay) in both data sets. The matrices Ss and Zs are a function of
the number of variables used in the SVAR. In the smaller data set, when five variables are used, the

Ss matrices are

01000
01000

812[01000 Sy = ,and 81 =10 0 1 0 0
00100

00010

for Identifications 1, 2, and 3 respectively, while the Z matrix is Z; = [ 1 0 0 0 0 |.Inthelarger

data set, the sign and zero restrictions are defined analogously.

6.2 IRFs

We first show replications of the IRF's reported in Beaudry et al. (2011) using the PFA. Then, we
analyze how the results change once we use our methodology. Sometimes we will label our methodology
the ARRW methodology. Panel (a) in Figure 3 shows the IRFs of TFP, stock price, consumption,
the federal funds rate, and hours worked under Identification 1 when using the PFA on the first data
set. This panel replicates the first block of Figure 1 in Beaudry et al. (2011). The identified shocks
generate a boom in consumption and hours worked. The response of hours worked is hump shaped.
We also report 68 percent confidence intervals. Clearly, the confidence intervals associated with the
IRFs do not contain zero for, at least, 20 quarters. Thus, it is easy to conclude that optimism shocks
generate standard business cycle type phenomena. Panels (b) and (c) in Figure 3 show the IRFs of
TFP, stock price, consumption, the federal funds rate, and hours worked under Identifications 2 and 3.

These panels replicate the second and third blocks of Figure 1 in Beaudry et al. (2011). As expected,
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Figure 3: IRFs to an Optimism Shock Using the PFA: Five-Variable SVAR

because of the addition of the sign restrictions on the IRF of consumption, the results are stronger.
Using these two identification schemes we also find a positive response of consumption and a positive
hump-shaped response of hours worked to optimism shocks. Furthermore, the positive responses last
longer than under Identification 1 and the confidence intervals tell us that the IRFs are significantly
different from zero. The findings reported in Figure 3 are robust to extending the number of variables.
Figure 17 in the appendix shows the results when we consider the larger data set.

As expected, these IRFs are highlighted by Beaudry et al. (2011). In theory, Identification 1
is agnostic about the response of consumption and hours worked to an optimism shock, while the
identified shock generates a boom in consumption and hours worked. If correct, this conclusion would
strongly support the view that optimism shocks are relevant for business cycle fluctuations. But, as
we will show below, these IRFs are not correct. They do not reflect the IRFs associated with the
agnostic identification scheme 1 because the PFA introduces sign restrictions in addition to the ones
described in Table 1.

Once we use the ARRW methodology to compute the correct IRFs, the results highlighted by
Beaudry et al. (2011) basically disappear. Panel (a) in Figure 4 reports the results for the first data
set using the ARRW methodology under Identification 1. There are three important differences with
the results reported in Beaudry et al. (2011). First, the PFA chooses a very large median response
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Figure 4: IRFs to an Optimism Shock Using the ARRW Methodology: Five-Variable SVAR

of stock prices in order to minimize the loss function. Second, the median IRFs for consumption and
hours worked are closer to zero when we use the ARRW methodology. Third, the confidence intervals
associated with the ARRW are much larger than the ones obtained with the PFA. As a consequence,
using the PFA, there is an upward bias in the IRFs and artificially narrow confidence intervals.

We need to consider Identifications 2 and 3 (see Panels (b) and (c) in Figure 4), which force
consumption to increase after an optimism shock, to find moderate evidence of positive IRFs of con-
sumption and hours worked. But it is still the case that the median response of stock prices is weaker,
the median IRFs of consumption and hours worked are closer to zero (i.e, the upward bias persists)
and the confidence intervals are still quite wide when compared with the ones reported in Beaudry
et al. (2011). As reported in Figure 18, these findings are robust to considering a larger SVAR.

In summary, using the ARRW methodology it is hard to claim that optimism shocks trigger a boom
in consumption and hours worked unless we impose a positive response of consumption at horizon zero.
Even after we impose this extra positive sign restriction, the results under the ARRW methodology
are much weaker. The sharp results reported in Beaudry et al. (2011) are, as indicated above, due
to upward bias in the response of consumption and hours worked and artificially narrow confidence
intervals associated with the PFA. Once we use the ARRW methodology to solve these two problems,
the results disappear. Next, we show that the discrepancy has its origin in the fact that the PFA does
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not respect the agnosticism of the identification scheme by introducing additional sign restrictions on

consumption and hours worked.

6.2.1 Understanding the Bias and the Artificially Narrow Confidence Intervals

We now shed some light on the upward bias and the artificially narrow confidence intervals. Let us
begin with the upward bias. We will focus on the five-variable SVAR. In the appendix we show that
the same conclusions are obtained using the seven-variable SVAR. Figure 5 plots the median IRF's and
the 68 percent confidence intervals obtained using the ARRW methodology and compares them with
the median IRFs obtained using the PFA. Figure 19, in the appendix, does the same for the larger
SVAR. Clearly, the median IRFs constructed using the PFA are close to the 84-th confidence band
constructed using the ARRW methodology. It is easy to observe that the PFA selects a large response
of stock prices to optimism shocks in order to minimize the loss function. By choosing a large response
of stock prices, the PFA also induces a positive response of consumption and hours worked because
the three responses are positively correlated. For the five-variable SVAR the correlation between the
IRF of stock prices to an optimism shock at horizon zero with the IRF of consumption to the same
shock and horizon is 0.22. In the case of hours worked it is 0.13. The correlations are 0.26 and 0.12
in the larger SVAR. By inducing this positive response of consumption and hours worked, the PFA is
introducing sign restrictions on these two variables and, thus, not respecting the agnosticism of the
identification scheme.

Let us now consider the artificially narrow confidence intervals. We have repeated several times
that the PFA selects a single orthogonal matrix instead of drawing from the conditional uniform distri-
bution. As we mentioned when describing Algorithm 4, for each draw from the posterior distribution
of the reduced-form parameters, there is a distribution of IRFs conditional on the sign and zero re-
strictions holding. By selecting a single orthogonal matrix, the PFA takes a single IRF from such a
distribution. Figure 6 plots the 68 percent probability intervals from the distribution of IRF's such that
the sign and zero restrictions hold at the OLS point estimate of the reduced-form parameters. These
intervals are constructed using a single value of the structural parameters, obtained from the Cholesky
decomposition and the OLS point estimate of the reduced-form parameters, and several draws of the
conditional uniform distribution of the orthogonal matrix Q. We have generated these draws repeat-
ing steps 2 and 3 of Algorithm 4 for the single value of the structural parameters. The probability

intervals are compared with the single IRFs obtained with the PFA evaluated at the same value of the
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Figure 5: Comparison of IRFs to an Optimism Shock: Five-Variable SVAR

Note: Median PFA refers to the median IRF obtained using the PFA.

reduced-form parameters (i.e., the OLS point estimate).!! In Figure 20 in the appendix we report the
results for the seven-variable SVAR . The dashed line shows the value of the IRFs resulting from the
PFA. The shadow area describes the 68 percent probability intervals obtained with our methodology.
No uncertainty is considered when the PFA is used. In contrast, using the ARRW methodology we
can see that there is an empirically relevant distribution of IRFs conditional on the sign and zero
restrictions holding. Additionally, note that for some variables — such as stock price, consumption,
and hours worked — the IRFs obtained using the PFA are close to the 84-th confidence band. Hence,
once again, we can see how the PFA picks a large response of stock prices and there is an upward
bias in the response of consumption and hours worked. The fact that the Mountford and Uhlig (2009)
methodology does not consider the distribution of IRFs lies behind the narrower confidence intervals
that Beaudry et al. (2011) report.

We can summarize our findings in Figure 7. Each column compares the posterior distributions
of IRFs at horizon zero and the median IRFs for stock prices, consumption, and hours worked for

each identification using both the PFA and the ARRW methodology.'? The posterior distributions

1We present the results only for identification 1. Similar results are obtained for the other two identification schemes
and alternative point estimates.

12\We report average median IRFs computed using horizons 0 to 3. The bias is larger using four periods and the
results are emphasized. In any case, the bias persists even if we use only horizon 0.
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Figure 6: Distribution of IRFs with the ARRW Methodology vs. Single IRFs with the PFA: Five-
Variable SVAR

Note: OLS PFA refers to the IRF obtained using the PFA and the OLS reduced-form estimates.

are approximated using a kernel smoothing function.'®> We have focused on the five-variable SVAR.
Similar results apply to the seven-variable SVAR. Column 1 displays the results for Identification
1. Comparing the PFA and the ARRW methodology we reach the following conclusions. First,
the posterior distribution of the IRF's of stock prices obtained using the PFA is centered around the
right-hand tail of the distribution obtained using the ARRW methodology. The bias is even more clear
looking at the median IRFs. Second, the PFA dramatically underestimates the variance of the posterior
distribution of IRFs of stock prices. These two results were expected since the PFA maximizes the
response of stock prices to optimism shocks in order to minimize the loss function. Since draws from
the posterior distribution of the IRFs of consumption and hours worked are positively correlated with
draws of the IRF of stock prices, we also observe artificially narrow and biased posterior distributions
of the IRFs for consumption and hours worked. Columns 2 and 3 show the results for Identifications
2 and 3. In both cases, we reach the same conclusion. The posterior distributions of IRFs at horizon
zero for stock prices, consumption, and hours worked are artificially compressed and upwardly biased
when computed using the PFA.

We now present additional evidence that the PFA introduces sign restrictions on variables that are

13We use the MATLAB ksdensity function based on Bowman and Azzalini (1997).
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Figure 7: Density of IRFs at Horizon Zero and Median of IRF's from Horizons Zero to Three

seemingly unrestricted, thus not respecting the agnosticism of the identification scheme. Let’s focus
on the case of the five-variable SVAR. Similar results apply to the seven-variable SVAR. We begin
with Identification 1. Table 2 compares the posterior probabilities that the IRFs for consumption and
hours worked at horizon zero are negative for the two methodologies. The IRF of consumption is never
negative when we use Mountford and Uhlig’s (2009) methodology, while it is negative approximately 40
percent of the time under the ARRW methodology. The same is basically true for hours worked. These
can also be seen by comparing the mean responses reported in Table 2. Therefore, Table 2 strongly
supports the argument that the PFA does not respect the theoretical agnosticism of the identification

scheme by introducing additional sign restrictions on these two variables. Another important result
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that can be found in the table is that the standard deviation of the IRFs at horizon zero is smaller

under the PFA. This is, of course, related to the fact that confidence intervals are wider when using

the ARRW methodology.

The PFA The ARRW Methodology
Mean | Std dev | Pr(- < 0) | Mean | Std dev | Pr(- < 0)

Consumption | 0.1034 | 0.0260 0.0000 | 0.0532 | 0.1914 0.3980
Hours Worked | 0.0736 | 0.0379 0.0250 | 0.0355 | 0.2891 0.4490

Table 2: Posterior Probabilities of Negative IRFs at Horizon Zero: Identification 1

Tables 3 and 4 repeat the exercise for Identifications 2 and 3. As we can see, the IRF of hours
worked at horizon zero under Identification 2 is almost never negative using the PFA, while it is
negative in approximately 40 percent of the draws using our methodology. Hence, the PFA also

introduces additional sign restrictions on hours worked in the case of Identification 2.

The PFA The ARRW Methodology
Mean | Std dev | Pr(- < 0) | Mean | Std dev | Pr(- < 0)
Hours Worked | 0.1325 | 0.0381 0.0010 | 0.0774 | 0.2793 0.3930

Table 3: Posterior Probabilities of Negative IRFs at Horizon Zero: Identification 2

The PFA The ARRW Methodology
Mean | Std dev | Pr(- < 0) | Mean | Std dev | Pr(- < 0)
Hours Worked | 0.1325 | 0.0381 0.0010 | 0.0613 | 0.2833 0.4090

Table 4: Posterior Probabilities of Negative IRFs at Horizon Zero: Identification 3

6.3 FEV

The fact that the PFA adds sign restrictions on variables that are seemingly unrestricted and does not
respect the agnosticism of the identification scheme is also reflected on the FEV reported in Beaudry
et al. (2011). Let us first analyze the SVAR with the smaller data set. We compare the contribution
of optimism shocks to the FEV obtained using the ARRW methodology and the PFA. For ease of

exposition, in Table 5 we focus on the contributions to the FEV at horizon 40.'

14Table 12 in the appendix reports the contributions to the FEV at additional horizons.
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The ARRW Methodology

|

Identification 1

Identification 2

Identification 3

Adjusted TFP 0.09 0.12 0.17
[0.03,0.22] [0.04,0.28 ] [0.06 , 0.33 ]
Stock Price 0.16 0.26 0.31
[0.03,0.47 ] [0.07, 0.58 ] [0.09, 0.62 ]
Consumption 0.17 0.28 0.40
[0.02,0.49 ] [0.06 , 0.59 ] [0.13, 0.66 ]
Real Interest Rate 0.18 0.20 0.23
[0.07,0.39 ] [0.08,0.40 ] [0.09,0.44 ]
Hours Worked 0.18 0.27 0.29
[0.04,0.48 ] [0.07, 0.55 ] [0.07 , 0.57 ]

The PFA

|

Identification 1

Identification 2

Identification 3

Adjusted TFP 0.17 0.22 0.28
[0.08,0.30 ] [0.10, 0.37 ] [0.14 , 0.43 ]
Stock Price 0.72 0.71 0.57
[0.55,0.85 ] [0.57,0.82] [0.42,0.72 ]
Consumption 0.26 0.69 0.76
[0.13,0.43 ] [0.53,0.83 ] [0.59, 0.87 ]
Real Interest Rate 0.13 0.13 0.35
[0.07,0.22 ] [0.07,0.22 ] [0.29,0.43 ]
Hours Worked 0.31 0.62 0.49
[0.21,0.44 ] [0.48,0.73 ] [0.34,0.64 ]

We first consider Identification 1.
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that optimism shocks explain little of the FEV of most relevant variables.

Table 5: Share of FEV Attributable to Optimism Shocks at Horizon 40: Five-Variable SVAR

Using the ARRW methodology, the median contribution of
optimism shocks to the FEV of consumption and hours worked is 17 and 18 percent, respectively.
In contrast, using the PFA the median contributions are 26 and 31 percent, respectively.
Identification 2 is used, the median contribution of optimism shocks to the FEV of consumption and
hours worked is 28 and 27 percent using our methodology, but it is equal to 71 and 62 percent using the
PFA. Identification 3 yields the highest contribution of optimism shocks to the FEV of consumption
and hours worked, 40 and 29 percent, respectively, when using our methodology. However, these values
are moderate compared to the 76 and 49 percent that we found when using the PFA. Table 5 also
reports the 68 percent confidence intervals. As was the case with IRFs, the confidence intervals are

much wider under the ARRW methodology. They are so wide that, in some cases, it is easy to argue

The results for the seven-variable SVAR are reported in the appendix, Table 13 reports results



at horizon 40 and Table 14 reports additional horizons. As expected, because of the increase in the
number of variables, the contribution of optimism shocks declines relative to the case of five variables.
For example, using the ARRW methodology the median contribution of optimism to the FEV of output
is 12, 16, and 22 percent under Identifications 1, 2, and 3, respectively. In any case, these values are
remarkably lower than the ones found using the PFA: 23, 59, and 60 percent, respectively. As before,
confidence intervals are much wider when using the ARRW methodology.

Summarizing, using the ARRW methodology it is easy to conclude that optimism shocks explain
a very small share of the FEV of any variable in the SVAR. This conclusion contrasts with the results
obtained using the PFA. As was the case with the IRFs, since the PFA is not truly agnostic, it induces
an upward bias in the median explained share of the FEV and artificially narrow confidence intervals.
It is because of these two issues that Beaudry et al. (2011) can claim that optimism shocks explain a
large share of the FEV of some relevant variables. Once these two issues are corrected by the ARRW
methodology, it is not possible to support such a claim. We have reported the results only for horizon

40 but Appendix 9.3 shows that these conclusions are true at any horizon.

6.3.1 Replicating the Penalty Function Approach Using the ARRW Methodolgy

In this subsection, we show that in the case of Identification 1 the PFA in Beaudry et al. (2011) can be
replicated using the ARRW methodology by considering some additional restrictions on the orthogonal
matrix Q.1°

Consider Identification 1 and note that there exists a closed-form solution to the minimization
problem embedded in the PFA, as shown in Subsection 5.3. Specifically, the penalty function is
minimized when the first column of the orthogonal matrix equals q; = [ 010 --- 0 }/. Thus, we
can replicate Beaudry et al. (2011) using our methodology by imposing zero constraints on the first
column of the orthogonal matrix Q. In particular, let f(Ag, A,) = [ Lo (Ao, A}) T, ]/, where I,

allows us to put the zero constraints on the orthogonal matrix Q. We define the matrices S and Z as

151n fact, this is true for any identification that fulfills the conditions stated in Subsection 5.3.
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follows

(100000000 0]
0000010000
S;=[0 100000000 and Zi={0000000100
0000000010
0000000001

The S matrix is identical to the one reported in Subsection 6.1, but the Z matrix has changed to

reflect the additional restrictions on the first column of the orthogonal matrix Q.

Adjusted TFP Stock Price Adjusted TFP Stock Price
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Real Interest Rate Real Interest Rate
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(a) The PFA (b) ARRW with Additional Restrictions
Figure 8: Replicating the PFA using the ARRW Methodology: Five-Variable SVAR

Panel (b) in Figure 8 plots the IRFs of TFP, stock price, consumption, the federal funds rate, and
hours worked under Identification 1 using the ARRW methodology with the additional restrictions on
the first column of the orthogonal matrix Q. The results are identical to those reported in Panel (a) of
Figure 3, which are reproduced in Panel (a) of Figure 8. Thus, we have shown that (under Identification
1), the PFA is a particular case of our methodology with additional restrictions on the first column of
the orthogonal matrix Q. This also applies to the seven-variable SVAR as shown in Figure 21 in the
appendix. Since putting constraints on the orthogonal matrix Q is equivalent to imposing additional

sign restrictions, the PFA does not respect the agnosticism of the identification scheme and it naturally

40



produces artificially narrow confidence intervals and biased IRFs. Unfortunately, we can not show that
the PFA is a particular case of our methodology for all identification schemes. Nevertheless, it should
be clear that it always introduces additional restrictions (though they can not always be mapped into

our methodology) that create artificially narrow confidence intervals and may introduce bias.

6.4 Computational Time

Our methodology is faster than the PFA. Table 6 reports the results for the case of optimism shocks
using the five-variable SVAR. The PFA is approximately ten times slower than our methodology.
Similar results can be found in the case of the seven-variable SVAR. Note that the computational time
in Mountford and Uhlig’s (2009) methodology is a function of the non-linear solver used to solve the
minimization of the penalty function. We start the non-linear optimization from eight random starting
points and then we pick the best one. Mountford and Uhlig (2009) follow a similar approach in order
to avoid finding a local minimum. Of course, Identification 1 could have been solved faster with the

PFA using the insights of Section 5.3.

The PFA  The ARRW Methodology Ratio
Identification 1 98.17 9.81 10.01
Identification 2 102.10 10.18 10.03
Identification 3 106.69 10.90 9.79

Table 6: Computational Time in Seconds: Five-variable SVAR

7 Fiscal Policy Shocks

Let us now focus on the second application. The aim of Mountford and Uhlig (2009) is to analyze the
effects of fiscal policy using SVARs. They focus on unanticipated and anticipated fiscal policy shocks.
They identify an unanticipated government revenue shock as well as an unanticipated government
spending shock by imposing sign restrictions on the fiscal variables themselves as well as imposing
orthogonality to a generic business cycle shock and a monetary policy shock. No sign restrictions are
imposed on the responses of output, consumption, and investment to fiscal policy shocks. Thus, the
identification remains agnostic with respect to the responses of these key variables of interest to fiscal
policy shocks. The problem is, again, that the PFA is not really agnostic about the response of these

variables.
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They also consider three combined shocks (which are linear combinations of the unanticipated fiscal
policy shocks): deficit-spending shocks, deficit-financed tax cut shocks, and balanced-budget spending
shocks. These shocks are used to compare three fiscal policy scenarios of the same name. We proceed
as in the case of the optimism shocks. We first replicate the results that Mountford and Uhlig (2009)
obtain using the PFA. Then, we repeat their empirical work using our methodology, which is truly
agnostic, to show how their main results significantly change.'® Mountford and Uhlig (2009) conclude
that deficit-financed tax cut shocks work best among the fiscal policy scenarios to improve GDP. In
contrast, using our methodology we find no evidence to support such a claim. More generally, we find
that it is very difficult to reach any conclusion about the effects of any of the three combined shocks
(and therefore about the effects of any of the three associated fiscal policy scenarios) because of very
wide confidence intervals around the median IRFs and the median fiscal multipliers associated with
each scenario. As a consequence, any conclusion derived from Mountford and Uhlig’s (2009) results
relies on artificially narrow confidence intervals associated with the PFA.

Our findings also show that it is very hard to support any of Mountford and Uhlig’s (2009) claims
about the effects of the unanticipated fiscal policy shocks. Regarding unanticipated government rev-
enue shocks, while Mountford and Uhlig (2009) report that GDP and consumption significantly decline
in response to such shocks using the PFA, we find no support for such a claim using our methodology.
The median IRFs of GDP, consumption, and non-residential investment to such shocks are negative
using the PFA | but positive using our methodology. Furthermore, wide confidence intervals invalidate
any conclusion. In the case of unanticipated government spending shocks, except for investment, the
median IRFs from both methodologies are quite similar to each other, but wide confidence intervals
make it very hard to reach any conclusion. As was the case with Beaudry et al. (2011), we will argue
that the problem behind the bias and the artificially narrow confidence intervals is that, by using
the PFA, the authors are not being truly agnostic — additional sign restrictions are being imposed on
output, consumption, and investment. Finally, for this application our methodology is also faster than

the PFA.

7.1 Data and Identification Strategy

We use the same data set as Mountford and Uhlig (2009) in order to shed light on the implications of

our methodology. The data set contains 10 U.S. variables at a quarterly frequency from 1955 to 2000:

16To keep our paper at a reasonable length, we omit the analysis of the anticipated fiscal policy shocks.
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GDP, private consumption, total government spending, total government revenue, real wages, private
non-residential investment, interest rate, adjusted reserves, producer price index of crude materials
(PPIC), and GDP deflator. The identification strategy is described in Table 7. Appendix 9.2 gives

details about the estimation procedure and the data set.

Shocks

Business Cycle | Monetary Policy | Gov Revenue | Gov Spending
GDP +
Total Gov Spending +
Total Gov Revenue + +
Interest Rate +
Adjusted Reserves —
PPIC —
GDP Deflator —
Private Consumption +
Private Non-Res Investment +
Real Wages

Table 7: Mountford and Uhlig (2009)

7.1.1 TUnanticipated Fiscal Policy Shocks

We begin by describing the identification of the unanticipated fiscal policy shocks. Following Mountford
and Uhlig (2009), we identify these shocks in three steps. In the first step, we identify a business cycle
shock imposing four positive sign restrictions on GDP, private consumption, private non-residential
investment, and total government revenue during four quarters — quarters zero to three — following the
initial shock. In the second step, we identify a monetary policy shock imposing positive sign restrictions
on interest rates, and negative sign restrictions on adjusted reserves, GDP deflator, and PPIC during
the four quarters following the initial shock. In addition, the monetary policy shock is required to
be orthogonal to the business cycle shock. In the third step, we identify the unanticipated fiscal
shocks. The unanticipated government revenue shock is identified imposing positive sign restrictions
on the response of total government revenue during the four quarters following the initial shock and
requiring that the shock be orthogonal to the business cycle shock and the monetary policy shock. The
unanticipated government spending shock is identified likewise. Hence, the identification is agnostic
with respect to the responses of GDP, private consumption, and private non-residential investment to
fiscal policy shocks. The PFA will not respect this agnosticism. Importantly, the unanticipated fiscal

shocks are not required to be orthogonal between them.
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As in the case of optimism shocks, it is instructive to map the identification strategy to our

methodology. The function f (Ag, A;) and the matrices Ss necessary to apply our methodology are

Lo(Ag, Ay) Sjo Om@G)mn Om@)m Om(i)m
F(Ag, Ay) = Ao A1 S; = @ 7 e Zmbn | e =1, 4.
Lo(Ap, Ay) Oy OmGyn  Sjz Om@)m
| Ls(Ag, Ay) | | Omyn OmGyn OmGyn Sjs |

where 0,,,(j)» is an m(j) times n matrix of zeros and m(j) =4 if j = 1 or 2 and m(j) = 1 otherwise,

and
100 00O0O0OO0O0O® O 0001 0 0 0 0O0°O
0000O0O0O0OO0OT1O0ODO0 0000 -1 0 0 0O0O0
Slt - 7SQt = )
00100O0O0O0O0DO 0000 O -1 0 00O
0000O0O0OO0OO0OT10 00000 0 0 —-1000
Sgtz[0010000000],and84t:[0100000000
for t = 0,...,3. In addition, we need to impose the orthogonality conditions between the shocks as

described above. This is straightforward from the discussion in Section 3.2. The only challenge is that
Mountford and Uhlig (2009) do not require orthogonality between the unanticipated fiscal shocks; thus,
we need to accommodate our methodology to study this case. We accomplish this by requiring that
the unanticipated government revenue (spending) shock, associated with the third (fourth) column
of Q, be orthogonal to the first and second columns of Q, associated with the business cycle and
monetary policy shocks, respectively, without restricting other columns of Q. For example, in the case
of the unanticipated government spending shock, this is accomplished by modifying Ry (Ao, A, ) in
Theorem 3 to be equal to

Ri(Ag,Ay) = Q).

The reader should note that a direct application of Theorem 3 would make Ry (Ag, A ) depend on

Qj instead of QY. There are no zero restrictions; hence, we do not need to define any Z matrix.
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Next, we describe the three linear combinations of the unanticipated fiscal policy shocks that are

used to study the three fiscal policy scenarios.

7.1.2 Fiscal Policy Scenarios

The deficit-spending shocks (used to study the deficit-spending scenario) are a sequence of unantici-
pated fiscal policy shocks where total government spending rises by 1 percent and total government
revenue remains unchanged during the four quarters following the initial shock. The deficit-financed
tax cut shocks (used to study the deficit-financed tax cuts scenario) are a sequence of unanticipated
fiscal policy shocks where total government spending remains unchanged and total government revenue
falls by 1 percent during the four quarters following the initial shock. The balanced-budget spending
shocks (used to study the balanced-budget spending scenario) are a sequence of unanticipated fiscal
policy shocks where total government spending rises by 1 percent and total government revenue rises
by 1.28 percent during the four quarters following the initial shock.'” Let (ass,bs;) for t = 0,...,3
and s € {DS,DTC,BB} denote the weights to be used in the linear combination of the unanticipated
fiscal policy shocks to get the deficit-spending shocks (DS), the deficit-financed tax cut shocks (DTC),
and the balanced-budget spending shocks (BB), respectively. For example, let us consider the case of
a deficit-spending shock. Following Mountford and Uhlig (2009) we solve for such weights by solving

the linear system of equations described below

T

0.01 = Z (e'GSLT_t (Ao, A+) qQ4aps;t + e'GSLT_t (Ao, A+) quDS,t) for T = 0, c ,3
t=0

T

0 = Z (e/GRLTft (A07 A+) q4aps.t + e/GRLTft (A07 A+) quDS,t> for 7 = 07 SR 3
t=0
where egs (egr) is a unit vector with a one at the entry associated with total government spending
(government revenue) in the SVAR and zeros otherwise. Then, we can use the weights (apsy, bps.t)
for t = 0,...,3 to build the column vector associated with the deficit-spending shocks as qps =
quaps: + qsbpsy for t = 0,...,3. In a similar fashion, we can construct weights for the other two

combined shocks and obtain the column vectors qprc and qpg.

"The percentage increase in total government revenue is higher than the percentage increase in total government
spending so that total government revenues and total government spending increase by the same amount during the
four quarters following the initial shock.
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7.2 IRFs to Unanticipated Fiscal Policy Shocks

Let us begin examining the IRFs. We first show the replications of the IRF's reported by Mountford and
Uhlig (2009) using the PFA and then we analyze how the results change once we use our methodology.
To save space, we do not report results on either business cycle or monetary policy shocks. Also, we
refer to private consumption and to private non-residential investment as consumption and investment,
respectively. Finally, and also because of space considerations, we just concentrate on the responses

of GDP, consumption, and investment.

GDP GDP
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Figure 9: IRFs to an Unanticipated Government Revenue Shock

Figure 9 plots the IRFs to an unanticipated government revenue shock. Panel (a) replicates the
results reported in Figure 4 in Mountford and Uhlig (2009). This panel shows that using the PFA,
the median IRFs of GDP, consumption, and investment are negative. Furthermore, the 68 percent
confidence intervals are narrow and do not contain zero. Therefore, one can easily conclude that
unanticipated government revenue shocks cause a decline in economic activity. In contrast, once

we use our methodology (see Panel b), the sign of the median IRFs changes and the 68 percent
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confidence intervals are much wider. Thus, as in the case of optimism shocks, the PFA creates bias
and artificially narrow confidence intervals. In addition, the PFA chooses a very large median response

of total government revenue.

Consumption GDP Consumption

M M M N M 4 M M M M M M N M M M
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b o e
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(a) The PFA (b) The ARRW Methodolgy

Figure 10: IRFs to an Unanticipated Government Spending Shock

Figure 10 plots the IRFs to an unanticipated government spending shock. Panel (a) replicates
Figure 7 in Mountford and Uhlig (2009) and it shows the median IRFs of GDP, consumption, and
investment. Using the penalty approach, the median response of GDP changes from positive to
negative in period 10, the response of consumption changes from zero to negative around period 12,
and the response of investment is always negative. Although less than in the case of the unanticipated
government revenue shocks, the median IRFs change when we use the ARRW methodology (see Panel
b). The changes are important for investment (whose response is positive for 5 periods). Nevertheless,
the confidence intervals are wider under our methodology and they contain zero. Analogously to
the case of unanticipated government revenue shocks, the PFA introduces downward bias (at least
for several quarters) in the response of investment to unanticipated government spending shocks and

creates artificially narrow confidence intervals. It is also the case that the PFA picks a large response

47



of total government spending to minimize the loss function.

Summarizing, using the ARRW methodology we observe important changes in the median IRFs to
unanticipated fiscal policy shocks with respect to the results reported in Mountford and Uhlig (2009).
In what follows we show that the lack of agnosticism of the PFA introduces a bias in the response of
some variables and delivers confidence intervals that are artificially narrow. The strong results reported
in Mountford and Uhlig (2009) are because of the bias and the artificially narrow confidence intervals.

The truly agnostic ARRW methodology amends these two problems and the results disappear.

7.2.1 Understanding the Bias and the Artificially Narrow Confidence Intervals

As before, we now shed some light on the biases and artificially narrow confidence intervals. Let us
begin with the biases related to unanticipated government revenue shock. The PFA selects a large
response of total government revenue to this shock in order to minimize the loss function. By selecting
a large response of total government revenue, the PFA is implicitly forcing a negative response of
GDP, consumption, and investment because their IRFs are negatively correlated with the IRF of
total government revenue. The correlations of the IRF of total government revenue to unanticipated
government revenue shocks at horizon zero with the IRFs of GDP, consumption, and investment to
the same shock and horizon are —0.12, —0.11, and —0.01, respectively.

In the case of unanticipated government spending shocks the PFA also selects a large response of
total government spending in order to minimize the loss function. By choosing a large response, the
PFA is implicitly forcing a negative response of investment because its IRF is negatively correlated
with the response of total government spending. The correlation between the IRF of total government
spending to unanticipated government spending shocks at horizon zero with the IRF of investment
to the same shock and horizon is —0.27. Additionally, the PFA is over-estimating the response of
GDP and consumption to an unanticipated government spending shock because the correlations of the
IRF's of GDP and consumption with the IRF of government spending are 0.49 and 0.28, respectively.
By inducing these correlated responses the PFA is introducing additional sign restrictions on these
variables and, thus, not respecting the agnosticism of the identification scheme.

Let us now focus on the artificially narrow confidence intervals generated by the PFA. We have
shown that for each draw from the posterior distribution of the reduced-form parameters, there is a
distribution of IRF's conditional on the sign and zero restrictions holding, and that the PFA selects

a single orthogonal matrix instead of drawing from the conditional uniform distribution. What are
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the consequences of this? Not surprisingly at this juncture, the consequence is artificially narrow
confidence intervals. To see this, we first examine the IRFs to an unanticipated government revenue
shock evaluated at a value of reduced-form parameters given by the OLS point estimates. The dashed
lines in Panel (a) of Figure 11 show the IRFs obtained using the Cholesky decomposition and the
OLS point estimates. The shadow areas in Panel (a) of Figure 11 correspond to the 68% confidence
bands of the distribution of IRFs at the OLS point estimate of the reduced-form parameters. These
confidence bands characterize the distribution of IRFs consistent with the sign and zero restrictions,
and they are constructed using the Cholesky decomposition, the OLS point estimate of the reduced-
form parameters, and several draws from the conditional uniform distribution of orthogonal matrix
Q. The distribution of the IRFs is in sharp contrast with the single IRFs obtained using the PFA
evaluated at the same value of the reduced-form parameters. Panel (b) Figure 11 shows that the same

happens in the case of the unanticipated government spending shock.

..................................................
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Figure 11: Distribution of IRFs with the ARRW Methodology vs. Single IRFs with the PFA

Note: OLS PFA refers to the IRF obtained using the PFA and the OLS reduced-form estimates.

We summarize our findings in Figure 12. The first column compares the posterior distributions
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of IRFs at horizon zero and the median IRFs for total government revenue, GDP, consumption, and
investment to an unanticipated government revenue shock using both the PFA and the ARRW method-
ology.'® The posterior distributions are approximated using a kernel smoothing function. Comparing
the PFA and the ARRW methodology, we reach the following conclusions. First, the posterior distri-
bution of IRF's of total government revenue obtained using the PFA is centered around the right-hand
tail of the distribution obtained using the ARRW methodology. The bias is even more clear, when we
look at the median IRFs. Second, the PFA dramatically underestimates the variance of the posterior
distribution of IRFs of total government revenue. These two results were expected since the PFA is
maximizing the response of total government revenue in order to minimize the loss function. We also
observe very narrow and downwardly biased posterior distributions of the IRFs for GDP, consump-
tion, and investment. Column 2 does the same for the IRFs of total government spending, GDP,
consumption, and investment to an unanticipated government spending shock. Again, the posterior
distribution of IRFs of total government spending obtained using the PFA is centered around the
right-hand tail of the distribution obtained using the ARRW methodology. We also observe very nar-
row and downwardly biased posterior distributions of the IRF's for investment, and there is an upward
bias for the response of GDP.

We now present additional evidence that the PFA is not truly agnostic because it introduces ad-
ditional sign restrictions on variables that are seemingly unrestricted. Table 8 compares the posterior
probabilities that the IRFs for GDP, consumption, and investment to an unanticipated government
revenue shock are negative in at least one of the first four horizons. The IRFs of the three variables are
almost always negative when using the Mountford and Uhlig (2009) methodology, while it is negative
only about 25 percent of the time when using the ARRW methodology. Hence, the PFA imposes addi-
tional sign restrictions on these three variables. Table 9 shows that the PFA also distorts the posterior
probabilities of negative IRFs for GDP and investment in response to an unanticipated government

expenditure shock .

7.3 Three Fiscal Policy Scenarios

Equipped with the unanticipated fiscal policy shocks, we can analyze the three fiscal policy scenarios.

We first study how the IRFs associated with the deficit-spending, the deficit-financed tax cuts, and

18We report average median IRFs computed using horizons 0 to 3. The bias is larger using four periods and the
results are emphasized. In any case, the bias basically persists using only horizon 0.
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Figure 12: Density of IRFs at Horizon Zero and Median of IRFs from Horizons Zero to Three

The PFA The ARRW Methodology
Mean | Std dev | Pr(- < 0) | Mean | Std dev | Pr(- < 0)
GDP -0.1367 | 0.0741 0.9882 | 0.1528 | 0.2046 0.2400
Consumption -0.0960 | 0.0854 0.8415 | 0.0869 | 0.1582 0.2990
Non-res Investment | -0.3658 | 0.4704 0.7752 | 0.1528 | 1.1037 0.2522

Table 8: Posterior Probabilities of Negative IRFs in at Least One of the First Four Horizons: Unan-
ticipated Government Revenue Shock

the balanced-budget spending shocks change when using the ARRW methodology with respect to the
results reported in Mountford and Uhlig (2009). Second, we do the same for the fiscal multipliers. As

has been the case with unanticipated fiscal policy shocks, we just report results for GDP, consumption,
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The PFA The ARRW Methodology
Mean | Std dev | Pr(- < 0) | Mean | Std dev | Pr(- < 0)
GDP 0.0882 | 0.0573 | 0.0565 | 0.0708 | 0.2187 | 0.3795
Consumption 0.0036 | 0.0523 0.4480 | 0.0270 | 0.1681 0.4203
Non-res Investment | -0.2157 | 0.3964 0.7073 | 0.0708 | 1.1502 0.4635

Table 9: Posterior Probabilities of Negative IRFs in at Least One of the First Four Horizons: Unan-
ticipated Government Spending Shock

and investment.

7.3.1 IRFs

We begin with the deficit-spending shocks. Panel (a) in Figure 13 replicates the results in Figure 10 in
Mountford and Uhlig (2009). Using the PFA, one could conclude that deficit-spending shocks produce
a drop in GDP (after a few periods of a small increase), consumption, and investment (although the
drop is statistically significant only for investment). However, once we use our methodology, these
results disappear. There is a very wide range of IRFs that are consistent with these shocks, making
it very hard to say anything about the effects of deficit-spending shocks. In most cases the confidence
intervals reported using the ARRW methodology are at least five times bigger than the confidence
intervals reported using the PFA. This means that, once we combine the unanticipated fiscal policy
shocks, the confidence intervals are compounded and become even wider than before. Mountford and
Uhlig’s (2009) conclusions are based on artificially narrow confidence intervals.

Next, we study deficit-financed tax cut shocks. Panel (a) in Figure 14 replicates the results in
Figure 11 in Mountford and Uhlig (2009). We can see that the median IRFs of GDP, consumption,
real wages, and investment are positive and the tight 68 percent confidence intervals do not contain
zero. Mountford and Uhlig (2009) use these results to claim that deficit-financed tax cut shocks work
best to improve economic activity. On the contrary, the IRFs computed using the ARRW methodology
do not provide evidence to support these findings. The median responses are negative for the first few
periods but, again, very wide confidence intervals make the interpretation of the median IRFs very
hard. The upward bias and the artificially narrow confidence intervals obtained using the PFA are
behind Mountford and Uhlig’s (2009) conclusions.

Finally, Mountford and Uhlig (2009) study a balanced-budget spending scenario. Panel (a) in
Figure 15 replicates the results reported in Figure 12 in Mountford and Uhlig (2009). As can be seen,

the median IRFs of GDP, consumption, and investment are (almost always) negative and the narrow
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Figure 13: IRFs to a Deficit-Spending Policy Shock

68 percent confidence intervals do not contain zero. Again, once we consider our methodology, there is
no evidence to support these results. The median responses are positive for the first few periods, but
the confidence intervals are so wide that it is hard to conclude anything at all. Downward bias and
artificially narrow confidence intervals are behind any conclusions implied by Mountford and Uhlig
(2009).

Our methodology paints a completely different picture than the one reported in Mountford and
Uhlig (2009). The biases that we find are very hard to interpret because these shocks are linear
combinations of shocks that are already biased. The PFA’s lack of agnosticism is mostly reflected in
extremely narrow confidence intervals.

The comparison between scenarios becomes even harder once we consider the cumulative discounted
IRF's to either deficit-spending or deficit-financed tax cut shocks. The cumulative discounted IRF's
at horizon 7 of variable y to the combined shock s is > /(1 + i) "e;L; (Ao, A}) qs, where e, is a
unit vector that selects the IRF of the variable under analysis, q, defines either the deficit-spending
or deficit-financed tax cut shock depending on the value of s € {DS,DTC}, and i denotes the average
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Figure 14: IRFs to a Deficit-Financed Tax Cut Shock

real interest rate over the sample. The real interest rate is computed as the difference between the
federal funds rate and the inflation rate implied by the GDP deflator and, in our sample, equals 2.51
percent — annualized.

Panel (a) in Figure 16 replicates the results reported in Figure 13 in Mountford and Uhlig (2009).
The panel shows that the median cumulative discounted IRF of GDP to a deficit-spending shock
becomes negative after a few periods and in the case of a deficit-financed tax cut shock is always
positive. Moreover, the 68 percent confidence intervals associated with the shocks are narrow and in the
case of deficit-financed tax cut shocks do not contain zero. Based on this evidence, Mountford and Uhlig
(2009) conclude that a deficit-financed tax cut scenario works best to improve GDP. Unfortunately,
once we use the truly agnostic ARRW methodology, this result also disappears. The median cumulative
discounted IRF of GDP to a deficit-spending shock is positive during 25 periods and it is negative
for 10 periods for the case of deficit-financed tax cut shocks. As before, these biases are very hard to
interpret because the deficit-spending and the deficit-financed tax cut shocks are linear combinations

of shocks that are already biased. In any case, the correctly computed 68 percent confidence intervals
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Figure 15: IRFs to a Balanced-Budget Shock

contain zero for both IRFs and are at least five times larger than the ones reported using the PFA.

Again, the PFA’s lack of agnosticism is mostly reflected in extremely narrow confidence intervals.

7.3.2 Fiscal Multipliers

In addition to the IRF analysis, Mountford and Uhlig (2009) compute fiscal multipliers to compare
the effects of deficit-spending shocks and deficit-financed tax cut shocks. Specifically, they compute

the present value multipliers at horizon 7 of the combined shock s on variable y

Dol +4)""e, Ly (Ao, Ay)qs 1
> i—o(1+ i) 7efus y Ly (Ao, Ay) g, (f/GDP)

and the impact multipliers at horizon 7 of the combined shock s on variable y

e, L. (Ao, Ay)qs 1
e vsyLo (Ao, Ay) q. (f/GDP)’

where e, is a unit vector that selects the IRF of the variable under analysis, ey is a unit vector

95



Deficit-Spending Deficit-Spending
Cum Discounted Gov Spending Cum Discounted GDP Cum Discounted Gov Spending
N N Sy e

Cum Discounted GDP

~ N N N H N 12 H H N N N N N N H R N N N N N
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Deficit-Financed Tax Cut Deficit-Financed Tax Cut

e Cum Discounted GDP
s 50 : .

25}t

H H H H H 25 H H H H
5 10 15 20 25 0 5 10 15 20 25

(a) The PFA (b) The ARRW Methodology

Figure 16: Cumulative IRF's to Deficit-Spending and Deficit-Financed Tax Cut Shocks

that selects the IRF of the fiscal variable (total government revenue or total government spending),
(f/GDP) denotes the average share of the selected fiscal variable in GDP over the sample, and vs
is equal to —1 if s = DT'C and y # GDP and equals 1 otherwise. The indicator variable vgy is a
normalization so that the multiplier of the deficit-financed tax cut shock can be interpreted as the
increase in GDP in response to a decrease in total government revenue.

In the case of present value multipliers, y is GDP and f is total government spending (revenue)
when s = DS (DTC). In the case of impact multipliers, y can be GDP, total government spending, or
total government revenue and f is total government spending (revenue) when s = DS (DTC).

Table 10 reports the median multipliers. We also report the 68 percent confidence intervals. Also,
quarter ¢ in the table corresponds to horizon ¢t — 1 in the above formulas.

Panel (a) shows the present value multipliers associated with deficit-spending and deficit-financed
tax cut shocks. The upper block of this panel replicates the results reported in Table 2 in Mountford
and Uhlig (2009). The bottom block of this panel reports the results obtained using our methodology.
Using the PFA, the median multipliers associated with deficit-financed tax cut shocks are positive for
at least 12 quarters. In contrast, these median multipliers are negative at all horizons using the ARRW
methodology. When we consider deficit-spending shocks, we find that while the median multipliers
are negative after 12 quarters using the PFA, they are positive during 20 quarters using the ARRW

methodology. Also, the median multipliers associated with the deficit-spending shocks are larger. At
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1 qrt 4 qrts 8 qrts 12 qrts 20 qrts Max
(a) Present Value Multipliers
The PFA
DTC 0.30 0.53 1.62 4.79 -4.71 4.79
[0.13,0.50 | [0.44 ,0.63 ] [1.15,2.27] [0.80,13.93] [-11.34,293] (qrt12)
DS 0.62 0.45 0.05 -0.30 -1.45 0.62
[0.26, 0.99 ] [0.33,0.57 ] [-0.30, 0.43 ] [-1.05,0.41 | [-4.87,0.34 ] (qrt 1)
The ARRW Methodology
DTC -0.75 -0.73 -1.04 -1.56 -1.83 -0.73
[-2.88,1.19] [-2.80,3.00] [-3.98,2.19 ] [-4.86 , 1.56 | [-3.54,0.03 | (qrt 4)
DS 1.12 1.03 1.11 1.58 2.99 3.79
[-4.33,5.67] [-7.68,5.86] [-4.84,7.88 ] [-4.61,8.16 | [-4.32,9.57] (qrt 26)
(b) Impact Multipliers: DTC
The PFA
GDP 0.30 0.95 2.05 3.23 2.33 3.38
[013,050] [0.77,1.13]  [1.31,285]  [209,459]  [058,4.32] (qrt14)
Total Gov Revenue -1.00 -1.00 0.02 0.91 0.89
[-1.00,-1.00] [-1.00,-1.00] [-0.33,0.38] [0.36, 1.61] [-0.05,1.93 ]
Total Gov Spending 0.00 0.00 0.28 0.44 0.40
[-0.00,0.00] [-0.00,0.00] [0.18,038]  [026,061]  [0.13,0.74]
The ARRW Methodology
GDP -0.75 -0.42 1.08 1.10 0.19 1.18
[-2.88,1.19] [-3.47,3.00] [-3.32,2.19] [-7.62,1.56] [-10.11,16.29] (qrt9)
Total Gov Revenue -1.00 -1.00 0.07 0.20 0.09
[-1.00,-1.00] [-1.00,-1.00] [-1.74,6.75] [-4.75, 5.65 | [-6.04, 7.85 |
Total Gov Spending 0.00 0.00 0.13 0.12 0.00
[-0.00,000] [-0.00,000] [-051,1.39] [-068,314] [-1.26,2.70]
(c) Impact Multipliers: DS
The PFA
GDP 0.62 0.28 -0.73 -0.98 -1.70 0.62
[026,099] [-0.12,0.70 ] [-1.70, 0.29 | [-2.45,0.30 | [-3.97,0.18 ] (aqrt 1)
Total Gov Spending 1.00 1.00 0.81 0.35 -0.24
[ 1.00, 1.00 | [ 1.00, 1.00 | [0.63,0.97 ] [0.10, 0.62 ] [-0.71,0.19
Total Gov Revenue 0.00 0.00 -0.38 -0.84 -1.77
[-0.00,000] [-0.00,000] [-0.93,022] [-1.65,003] [-3.24,-0.42]
The ARRW Methodology
GDP 1.12 0.46 -0.01 0.02 -0.50 1.46
[-4.33,5.67] [-14.31,7.64] [-16.69,13.45] [-23.87,20.64] [-23.49,24.07] (qrt3)
Total Gov Spending 1.00 1.00 0.72 0.28 -0.14
[ 1.00, 1.00 ] [ 1.00, 1.00 ] [-4.54 ,2.20 | [-5.98 , 2.85 | [-6.09 , 4.53 |
Total Gov Revenue 0.00 0.00 0.01 -0.46 -1.16
[-0.00,0.00] [-0.00,0.00] [-882,10.13] [-14.48,13.97] [-17.06, 16.06 ]

to the ones obtained using the PFA.

o7

Table 10: Fiscal Multipliers

their maximum value, the multipliers of the deficit-spending shocks are five times larger than the
ones reported using the PFA. As already mentioned, these biases are hard to interpret because the
multipliers being analyzed correspond to shocks that are linear combinations of shocks that are already

biased. Most important, the ARRW methodology reports confidence intervals that are huge relative

Panel (b) presents the impact multipliers associated with deficit-financed tax cut shocks. The
upper block of this panel replicates the results reported in Table 3 in Mountford and Uhlig (2009).
The bottom block of the panel reports the results obtained using the ARRW methodology. While
Mountford and Uhlig (2009) find positive GDP median multipliers for at least 20 quarters, we find




negative ones during the four quarters following the initial shock. After four quarters the median
multipliers associated with the ARRW methodology also become positive. In addition, even when
they share a sign, the median multipliers associated with our methodology are much smaller than the
median multipliers implied by the PFA. In any case, as before, the confidence intervals computed using
the ARRW methodology are so large that it is very hard to say anything concrete about the sign and
size of the multipliers.

Panel (c) presents the impact multipliers associated with deficit-spending shocks. The upper block
of this panel replicates the results reported in Table 4 in Mountford and Uhlig (2009), and the bottom
block of the panel reports the results obtained using the ARRW methodology. In this policy scenario,
both methodologies find the same sign (except for the 12 quarters) for the median multiplier. However,
the magnitudes are different. The absolute value of the GDP median multipliers resulting from the
ARRW methodology is approximately twice as large as the one resulting from the PFA. But it is also
the case that the confidence intervals computed using the ARRW methodology are so wide that it is
very hard to reach any conclusion.

Summarizing, Mountford and Uhlig (2009) use their results regarding the fiscal multipliers to em-
phasize that deficit-financed tax cut shocks work best to increase economic activity. But as mentioned
before, the PFA is not agnostic. Once we use our truly agnostic methodology, it is very hard to support
Mountford and Uhlig’s (2009) claims. Some median multipliers change sign; nevertheless, the correct
confidence intervals are so wide that it is very hard to reach any conclusion from a statistical point of

view.

7.4 Computational Time

Our methodology is also faster than the PFA in the case of unanticipated fiscal policy shocks. In
this case, the PFA is approximately three times slower than our methodology. The results are closer,
but the ARRW methodology is still faster. In order to avoid local minima when using the PFA, we
start the non-linear optimization from eight random starting points and then we pick the best one.

Mountford and Uhlig (2009) follow a similar strategy.

The PFA The ARRW Methodology Ratio
Fiscal Policy Shocks 12498.06 3929.3 3.18

Table 11: Computational Time in Seconds
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8 Conclusion

We have presented an efficient algorithm for inference in SVARs identified with sign and zero restric-
tions that properly draws from the posterior distribution of structural parameters. The algorithm
extends the sign restrictions methodology developed by Rubio-Ramirez et al. (2010) to allow for zero
restrictions. Our key theoretical contribution shows how to efficiently draw from the uniform distri-
bution with respect to the Haar measure on the set of orthogonal matrices conditional on some linear
restrictions on their coefficients holding. This is the crucial step that allows us to draw from the
posterior distribution of structural parameters conditional on the sign and zero restrictions. We have
used this algorithm to answer the following questions. Are optimism shocks an important source of
business cycle fluctuations? Are deficit-financed tax cuts better than deficit spending to increase out-
put? These questions have been previously studied by Beaudry et al. (2011) and Mountford and Uhlig
(2009), respectively, using the PFA. These authors have provided very definitive answers. Unfortu-
nately, we have shown that these sharp conclusions are due to shortcomings in the PFA. In particular,
we have shown that the PFA (1) imposes additional sign restrictions on variables that are seemingly
unrestricted that bias the results, and (2) it chooses a single value of structural parameters, instead
of drawing from its posterior, creating artificially narrow confidence intervals that also affect inference
and the economic interpretation of the results. These shortcomings appear because the PFA does not
correctly draw from the posterior distribution of structural parameters conditional on the sign and
zero restrictions. This problem is common to all of the existing methods. Our algorithm is also faster

than the current methods.
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9 Appendices

9.1 Appendix A. Estimation and Inference: Optimism Shocks

Following Beaudry et al. (2011) we estimate equation (3) with four lags using Bayesian methods with
a Normal-Wishart prior as in Uhlig (2005). Specifically, we take 1,000 parameter draws from the
Normal-Wishart posterior of the reduced-form parameters (B, ) and from the conditional uniform
distribution of Q. We use the data set created by Beaudry et al. (2011). This data set contains
quarterly U.S. data for the sample period 1955Q1-2010Q4 and includes the following variables: TFP,
stock price, consumption, real federal funds rate, hours worked, investment, and output. TFP is the
factor-utilization-adjusted TFP series from John Fernald’s website. Stock price is the Standard and
Poor’s 500 composite index divided by the CPI of all items from the Bureau of Labor Statistics (BLS).
Consumption is real consumption spending on non-durable goods and services from the Bureau of
Economic Analysis (BEA). The real federal funds rate corresponds to the effective federal funds rate
minus the inflation rate as measured by the growth rate of the CPI all items from the BLS. Hours
worked is the hours of all persons in the non-farm business sector from the BLS. Investment is real
gross private domestic investment from the BEA. Output is real output in the non-farm business sector
from the BLS. The series corresponding to stock price, consumption, hours worked, investment, and
output are normalized by the civilian non-institutional population of 16 years and over from the BLS.

All variables are logarithmic levels except for the real interest rate, which is in levels but not logged.

9.2 Appendix B. Estimation and Inference: Fiscal Policy Shocks

Following Mountford and Uhlig (2009) we estimate equation (3) with six lags using Bayesian methods
with a Normal-Wishart prior as specified in Uhlig (2005). We take 1,000 parameter draws from
the Normal-Wishart posterior (B, X) and from the conditional uniform distribution of Q. We use
the same data set as Mountford and Uhlig (2009). This data set contains quarterly U.S. data for
the sample period 1955Q1-2010Q4 and includes the following variables: GDP, private consumption,
total government spending, total government revenue, real wages, private non-residential investment,
interest rate, adjusted reserves, producer price index of raw materials, and GDP deflator. All variables

are logarithmic levels except for the interest rate, which is expressed in levels but not logged.

9.3 Appendix C. Tables and Figures
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The ARRW Methodology

|

Identification 1

Identification 2

Identification 3

Adjusted TFP 0.08 0.10 0.13
[0.03,0.21] [0.03,0.23 ] [0.05,0.28 ]
Stock Price 0.12 0.17 0.23
[0.03,0.34 ] [0.04,0.39 | [0.07 ,0.46 |
Consumption 0.11 0.14 0.21
[0.02,0.35 ] [0.03, 0.40 | [0.05,0.49 ]
Real Interest Rate 0.13 0.13 0.14
[0.06, 0.27 ] [0.05,0.27 | [0.06 , 0.28 ]
Hours Worked 0.12 0.14 0.16
[0.03,0.33 ] [0.04,0.34 ] [0.05,0.37 ]
Investment 0.13 0.15 0.18
[0.05,0.30 ] [0.05,0.35 ] [0.07, 0.38 ]
Output 0.12 0.16 0.22
[0.03,0.33 ] [0.05,0.39 ] [0.07, 0.46 |
Labor Productivity 0.10 0.12 0.20
[0.02,0.29 ] [0.03,0.34 ] [0.04 ,0.44 ]
The PFA ‘

Identification 1

Identification 2

Identification 3

Adjusted TFP 0.17 0.21 0.29
[0.08,0.30 ] [0.08 ,0.38 ] [0.13, 0.46 |
Stock Price 0.52 0.62 0.57
[0.34,0.70 ] [0.48 ,0.73 | [0.43 ,0.69 |
Consumption 0.13 0.55 0.61
[0.06 , 0.28 ] [0.39, 0.69 | [0.43 ,0.76 |
Real Interest Rate 0.10 0.06 0.26
[0.05,0.17 ] [0.03,0.13 ] [0.19, 0.34 ]
Hours Worked 0.16 0.38 0.30
[0.09,0.26 ] [0.25, 0.53 | [0.18 ,0.44 |
Investment 0.25 0.45 0.39
[0.16 , 0.37 ] [0.34,0.57 | [0.26 , 0.52 ]
Output 0.23 0.59 0.60
[0.13,0.39 ] [0.46 , 0.72 ] [0.44 ,0.73 ]
Labor Productivity 0.24 0.37 0.49
[0.12,0.39 ] [0.17 , 0.55 | [0.27 , 0.65 |
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Table 13: Share of FEV Attributable to Optimism Shocks at Horizon 40: Seven-Variable SVAR
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