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Abstract

This article suggests the new approach to an approximation of nonlinear DSGE models

moments. This approach is fast and accurate enough to use it for an estimation of nonlinear

DSGE models. The small financial DSGE model is repeatedly estimated by several

modifications of suggested approach. Approximations of moments are close to the results of

large sample Monte Carlo estimation. Quality of parameters estimation with suggested approach

is close to the Central Difference Kalman Filter (the CDKF) based. At the same time suggested

approach is much faster.
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1. Introduction

Modern macroeconomics seeks to explain the aggregate economy using theories based on

strong microeconomic foundations. The advantage of such an approach is a description of

models in terms of “deep structural” parameters that are not influenced by economic policy

[Wickens (2008)]. Nevertheless, these parameters should be estimated for usage of DSGE

models. There are different econometric techniques for models estimation but empirical studies

have concentrated their attention on an estimation of first-order linearized DSGE models [Tovar

(2008)].

Non-linear approximations of DSGE models have several important advantages, in

particular, they allow uncertainty to influence economic choices [Ruge-Murcia (2012)].

Parameters drifting and stochastic volatility are examples of important elements that are

essentially worthless with linear approximations [Fernandez-Villaverde, Guerron et al. (2010)].

Linear approximation of DSGE models behavior may significantly differ from higher order

(more accurate) approximations [Collard and Juillard (2001)]. Second order approximation

makes difference between the models and the approximation behavior much smaller. There are a

few methods for non-linear approximations of DSGE models, but the perturbation method is the

most widely used [Schmitt-Grohe and Uribe (2004)]. Thus advantages of non-linear

approximations are known and techniques for approximations are developed. However, these

advantages can not be fully implemented due to lack of estimation techniques for non-linear

approximations (existing techniques are too computationally expensive for usage of them with

medium-scale DSGE models).

There are two main approaches for an estimation of DSGE models: moments based and

likelihood based [DeJong and Dave (2007), Canova (2007)]. The likelihood based approaches

use non-linear filters for the construction of the likelihood function. The first of them is the

particle filter. This tool could produce all advantages of nonlinear approximation, including

sharper the likelihood function and smaller variance of parameters estimator [An and
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Schorfheide (2006), Fernandez-Villaverde, Guerron et al. (2010)]. However, the particle filters

have some disadvantages: the likelihood evaluation with the particle filter is a random variable

(each evaluation of the likelihood for the same model and observations produces different value).

Thus usual maximization algorithms can’t be used and Markov Chain Monte Carlo inefficiency

greatly increases - Pitt, Silva et al. (2012) show that number of draws should be 10 (from 5 to

400 depending on the number of particles) times higher for the same accuracy of MCMC.

There are alternative filters that can be used for the likelihood calculation. For example,

Andreasen (2008) has shown an advantage of the Central Difference Kalman Filter over a few

versions of particle filter (in terms of the quality and computing time (100 times faster)). The

Quadratic Kalman Filter has an advantage in the quality with some loss in computing time over

the Unscented Kalman filter (Julier and Uhlmann (1997)) and the Central Difference Kalman

Filter (Ivashchenko (2013)).

Moments  based  approaches  for  estimation  of  DSGE  models  are  more  robust  [Ruge-

Murcia (2007), Creel and Kristensen (2011)]. The first of them is the instrumental variables

approach which is a special case of the generalized method of moments [Canova (2007)]. All

variables of the DSGE model should be observed for usage of this approach. It can be true only

for small-scale DSGE models. Another version of the GMM is used for a linearized model

because a wide range of empirical targets can be calculated analytically [DeJong and Dave

(2007)]. The simulated method of moments has almost the same statistical efficient as the GMM,

but it is more computational demanding [Ruge-Murcia (2007)]. The SMM can be implemented

for non-linear DSGE models [Ruge-Murcia (2012), Kim and Ruge-Murcia (2009)]. But it’s too

slow for an estimation of medium-scale or large-scale models that are used for policymaking.

Another moments based approach is the indirect inference. Theoretically it’s more efficient than

the GMM [Creel and Kristensen (2011)]. The usage of the indirect inference is more complicated

than  the  GMM, because  it  requires  knowledge  of  the  moments  distribution  function.  It  can  be

calculated easily only for a narrow range of moments (usually it is parameters estimation of an
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econometric model, example is DSGE-VAR model). So, usually this approach is described

differently [DeJong and Dave (2007)].

This article suggests an approach for a fast calculation of non-linear DSGE model’s

moments. This moments calculations are compared with alternative approaches. A small non-

linear DSGE model is estimated with moments based approaches. The quality of such

estimations is compared with linear maximum likelihood estimation and the CDKF based quasi-

maximum likelihood estimation.

2. The approach for moments calculation

The equation (1) describes the data generating process for state variables (Xt) which is

approximation of a rational expectation model with perturbation method. Exogenous shocks ( t)

have normal distribution with covariance matrix  and mean equal zero. The measurement

equation (2) describes the dependence of observed variables (Yt) on state variables and

measurement errors (ut) that have normal distribution with zero mean and covariance matrix u.
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The measurement equation (2) is linear, therefore dependence between moments of

observed variables (Yt) and state variables (Xt) is standard. Equations for first and for second

moments of state variables (3)-(5) are more complicated.
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where  is the fourth moment of vector t, IX is  identity  matrix  of  the  same  size  as  state
variables vector (Xt), UEXE_XEE and UXEXE_EEXX are permutation matrixes that describe dependence
between vectors indicated in the subscript (equation (6) is an example):

tttXEEEXEttt XUX _ (6)
The equation (7) shows matrix formula for calculation of the fourth moment (for t):
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where n  is the number of elements in the vector t, vec(M;n;m) is the vectorization function that
transforms matrix M to matrix with n rows and m columns.

The solution of the equation (3) requires knowledge of vector’s Xt second moment. The

equation (4) for the second moment requires knowledge of the third and the fourth moments. So,

it is impossible to solve these equations directly. There are some approaches for approximation

of equation (3)-(5) solution. The key question is what to do with higher order moments. The first

way is to approximate the higher order moments (normal distribution would be used for this

approximation). The second way is to assume that the higher order moments are equal to zero.

Equations (8)-(9) are the formulas for the third and the fourth moments of normal

distribution:
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where X is the first moment of a vector Xt, X is the second central moment of a vector Xt, XX
is the fourth central moment of a vector Xt.

Equations (3)-(4) with normal approximation of the higher order moments are nonlinear

(in moments). Analytical solution of a large non-linear system is problematic. Thus numeric

solution is required. The simple numeric method is used:

AACB kXXxxkXXkX ,,1, (10)
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where X,k, XX,k, XXX,k, XXXX,k are  the  first,  the  second,  the  third  and  the  fourth  moments  of  a
vector Xt after iteration k.

It should be noted that only a few iterations can be calculated due to computational costs.

It means that general properties of the convergence are less important. The numerical

comparisons of moments and estimation based on them are made instead of it.

The equation (5) can be solved without numerical approximation (just with normal

approximation  of  third  moment  of  vector  [Xt;Xt-s]). This approach would be called the normal

approximation of the higher than 2nd moments (the NAHM2).

Alternative approach (where the higher order moments are zeros) is also used in this

article. Due to lower computational costs the third moment of Xt can be calculated (large formula

(12)).
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The equation for the third moment (with zero higher moments) is linear in the moments

of state variables Xt,  but  it  is  a  large  scale  equation.  Equation  for  the  second  moments  is

Lyapunov equation and there are special algorithms for solving it. The equation for the third

moments is large and there are no special algorithms (which use specific structure of matrixes)

for  solving  it.  This  is  why  the  same  iteration  algorithm  is  used  for  moments  calculation.  This

approach would be called the zero approximation of the higher than 3 moments (the ZAHM3).

The case with zero approximation of the higher than the second moment is calculated too (the

ZAHM2). It should be noted that difference between the NAHM2 and the ZAHM2 is 3 of 20

sum components in the dispersion formula (11).

The suggested approaches use properties of exogenous shocks ( t) normal distribution for

calculation of exogenous shocks higher moments. It means that these approaches can be easily
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modified for other distribution of exogenous shocks. However, an approximation of a rational

expectation model with the perturbation method (1) can have infinite unconditional moments if

shocks have heavier tails such as t-distribution. The reason is following: t-distribution has

infinite higher moments (depending on degrees of freedom); formula (1) means that Xt depend

on ( t)2, ( t-1)4, ( t-2)8 and so on. Thus, the suggested approaches can be modified for non-normal

distribution of exogenous shocks, if all moments of this distribution are finite.

3. Comparison techniques

Finance is one of those areas where linear approximation of DSGE models is unsuitable.

Therefore a finance model is used here for comparing different estimation approaches. The same

model as [Ivashchenko (2013)] is used (but with additional observed variables). Households

maximize the expected utility function (13) with budget constraint (14). There are 3 types of an

expenditure: consumption (Ct) with exogenous price (ZP,t),  one  period  bonds  (Bt),  and  stocks

(Xt), the price of which is St. There are 3 sources of income: exogenous income (StZI,t), bonds

with interest that were bought one period ago (Rt-1 Bt-1), and stocks with dividend that were

bought one period ago (Xt-1(St+Dt)).

0 ;;0 max
t XBC

tt C
E

(13)
tItttttttttttP ZSDSXBRSXBCZ ,111, (14)

This model suggests that dividend growth is exogenous (15), the bond amount is set by

government (16), and amount of stocks is equal to 1 (17).

tD
t

t Z
D
D

,
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The model (13)-(17) is transformed into (18)-(22) where stationarized variables are used.

Table 1 shows the relation between the original and stationarized variables.
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TABLE 1. The DSGE model variables
Variable Description Stationary variable

Bt Value of bonds bought by households at period t ttt SBb /

Ct Consumption at time t tttPt SCZc /ln ,

Dt Dividends at time t ttt SDd /ln
Rt Interest rate at time t tt Rr ln
St Price of stocks at time t 1/ln ttt SSs
Xt Amount of stocks bought by households at period t tt Xx

t
Lagrange multiplier corresponding to budget

restriction of households at period t tt

ZA,B,t
Exogenous process corresponding to near-

rationality of households with their bond position tBAtBA Zz ,,,,

ZA,C,t
Exogenous process corresponding to near-

rationality of households with their consumption tCAtCA Zz ,,,,

ZA,S,t
Exogenous process corresponding to near-

rationality of households with their stocks position tCAtCA Zz ,,,,

ZB,t
Exogenous process corresponding to bond amount

sold by the government tBtB Zz ,,

ZD,t
Exogenous process corresponding to growth of

dividends tDtD Zz ,,

ZI,t
Exogenous process corresponding to income of

households tTtT Zz ,,

ZP,t Exogenous process corresponding to price level 1,,, ln tPtPtP ZZz
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The optimal conditions of (18)-(19) problems with additional exogenous processes (zA,S,t,

zA,B,t, zA,C,t) are the following:

11,11,, 1)ln( ttPtttSAt dzs
t

z eeEe (23)
1,111,, )ln( tPtttttBAt zssr

t
z eEe (24)

tCAttt zcc ,, (25)
An  additional  exogenous  process  (zA,S,t,  zA,B,t,  zA,C,t) can be interpreted as near-rational

households (these processes have zero mean). Another interpretation is a compensation of

approximation errors (these processes allows the use of a linear approximation for parameter

estimation). All the exogenous processes are AR(1) with the following parameterization:
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The model parameters are estimated with indirect inference approach (DSGE-VAR with

4 lags and 5 iterations with zero higher than second moments). Monthly data (Average rate on 1-

month  certificates  of  deposit;  MSCI  USA  price  return;  MSCI  USA  gross  return;  personal

consumption expenditures; compensation of employees) from January 1975 till December 2012

is used. Estimated values are used for generating observations.

The following two approaches are used for comparison of the moments estimation

techniques. The first of them is a comparison of moments approximations with a usual

simulation based approach for moment’s calculation (it should be more accurate in case of a

large sample simulation). The second approach is a comparison of estimation error (generation

of the observed variables by the DSGE model and the estimation of models with different

moments based approaches).

The DSGE model is simulated for 100 000 observations. The moments are calculated.

This procedure is repeated 10 times. Mean and standard deviation of the moments are reported.

Deviations from this moment’s mean (errors) are reported for each approach.

The following procedure is used for comparison of the estimation results:

1. Generation of 400 observations (600 and drop of the first 200 observations) from the second-

order approximation of model

2. Parameters estimation by different approaches (linear maximum likelihood; the CDKF based

maximum likelihood; the indirect inference maximum likelihood and the GMM with

different moment’s calculation approaches). The true values of parameters are used as the

initial values.

3. Steps 1-2 are repeated 100 times.

The indirect inference maximum likelihood is DSGE-VAR (with infinite weight of prior

parameter) maximum likelihood estimation (Del Negro and Schorfheide (2004)). The Newey-

West estimator (with window equal 7 4(T/100)2/9)) is used for calculation of moments variance

for the GMM [Hamilton (1994)].
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The CDKF is used as a benchmark nonlinear estimation technique because it has

advantage over other approaches (in terms of speed with appropriate quality) that are well known

in DSGE literature [Andreasen (2008), Ivashchenko (2013)].

4. The results

Table 2 shows the results of moment’s estimation. All approaches have very high errors

after the first iteration, but these errors greatly decrease after the second iteration (to the same

level for each approach). The errors after 5 and 10 iterations are very close that indicates fast

convergence. It should be noted that the errors of all approaches are close to errors of mean over

100 000 sample (for the most of the moments errors are smaller than standard deviation). This

indicates a very high quality of such simple moment approximations. Thus suggested approaches

produce more accurate estimation of the moments than existing approach (simulation) and

require less computer time (14 sec. for simulation and less than 1 second for the NAHM2 and the

ZAHM2).  The  quality  of  the  NAHM2 and the  ZAHM3 is  almost  the  same.  The  quality  of  the

ZAHM2 is 3-4 times worse after 5-10 iterations.

It should be noted that the RMSE of all moments for the ZAHM2 with 10 iterations is a

little bit  worse than ones with 5 iterations.  A more detailed view shows that RMSE of the first

moments are much smaller for 10 iterations case, but RMSE of second moments is a little bit

higher for 10 iterations case. There are only 5 first moments and 115 second moments (including

all 4 lags); therefore influence of the second moments is higher for the RMSE of all moments.

This  difference  can  be  more  important  for  the  GMM  approach  due  to  smaller  variance  of  the

second moments (which means higher weight of second moments). This effect can be important

for the NAHM2 and the ZAHM3 because there are a few moments that have higher errors in 10

iterations case than in 5 iterations case (it can make score function of the GMM with 5 iterations

better than with 10 iterations for some weight matrixes).
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TABLE 2. The DSGE model moments estimation
Mean Std NAHM2 ZAHM2

iteration
number 1 2 5 10 1 2

obs_pp 9.32E-03 1.76E-04 -1.92E-01 8.18E-04 1.99E-05 1.89E-05 -1.92E-01 8.18E-04
obs_pg 1.57E-02 1.70E-04 -1.92E-01 8.71E-04 7.53E-05 7.42E-05 -1.92E-01 8.71E-04
obs_r 1.69E-02 6.56E-05 7.51E-04 -3.99E-05 8.72E-06 4.99E-06 7.51E-04 -3.99E-05
obs_c 9.32E-03 1.76E-04 -5.88E-02 -1.46E-01 8.04E-04 1.66E-05 -5.88E-02 -1.46E-01

Fi
rs

t

obs_i 9.32E-03 1.76E-04 -1.92E-01 8.19E-04 2.02E-05 1.92E-05 -1.92E-01 8.18E-04
obs_pp 3.09E-03 1.98E-05 -4.05E-02 1.55E-05 5.96E-06 5.98E-06 -4.05E-02 4.76E-05
obs_pg 3.22E-03 2.11E-05 -4.30E-02 3.66E-05 7.74E-06 7.75E-06 -4.30E-02 6.77E-05
obs_r 2.90E-04 2.21E-06 2.48E-05 -1.51E-06 2.69E-07 1.42E-07 2.48E-05 -1.36E-06
obs_c 2.15E-03 1.45E-05 -5.30E-03 -2.85E-02 -8.35E-04 -8.07E-04 -4.84E-03 -2.41E-02

Se
co

nd

obs_i 6.11E-03 2.39E-05 -4.05E-02 -9.33E-06 1.25E-05 1.25E-05 -4.05E-02 2.29E-05
obs_pp 8.87E-05 7.13E-06 -3.42E-03 1.90E-05 4.11E-08 3.29E-08 -3.44E-03 1.23E-06
obs_pg 2.35E-04 8.35E-06 -6.15E-03 3.20E-05 1.92E-06 1.89E-06 -6.17E-03 1.43E-05
obs_r 2.90E-04 2.21E-06 2.56E-05 -1.37E-06 2.80E-07 1.53E-07 2.55E-05 -1.39E-06
obs_c 5.89E-04 1.00E-05 -9.48E-03 4.50E-03 4.15E-04 3.86E-04 -8.57E-03 -1.35E-03

Se
co

nd
 la

gg
ed

obs_i 6.41E-05 1.06E-05 -3.42E-03 3.16E-05 -5.22E-06 -5.20E-06 -3.44E-03 1.14E-05
RMSE of first moments 1.51E-01 6.54E-02 3.62E-04 3.61E-05 1.51E-01 6.54E-02
RMSE of second moments 2.58E-02 5.80E-03 1.79E-04 1.75E-04 2.58E-02 5.18E-03
RMSE of second lagged moments (1
lag) 1.13E-02 1.77E-03 9.15E-05 8.46E-05 1.03E-02 1.04E-03

RMSE of all second moments (4 lags) 1.29E-02 2.87E-03 9.02E-05 8.71E-05 1.27E-02 2.55E-03
RMSE of all moments 3.22E-02 1.31E-02 1.13E-04 8.57E-05 3.22E-02 1.31E-02

TABLE 2 (continued). The DSGE model moments estimation
Mean Std ZAHM2 ZAHM3

iteration
number 5 10 1 2 5 10

obs_pp 9.32E-03 1.76E-04 2.01E-05 1.89E-05 -1.92E-01 8.18E-04 2.02E-05 1.89E-05
obs_pg 1.57E-02 1.70E-04 7.52E-05 7.40E-05 -1.92E-01 8.71E-04 7.56E-05 7.42E-05
obs_r 1.69E-02 6.56E-05 8.60E-07 5.88E-07 7.51E-04 -3.99E-05 8.87E-06 6.73E-06
obs_c 9.32E-03 1.76E-04 -1.97E-04 1.90E-05 -5.88E-02 -1.46E-01 -1.41E-03 1.84E-05

Fi
rs

t

obs_i 9.32E-03 1.76E-04 2.04E-05 1.92E-05 -1.92E-01 8.18E-04 2.05E-05 1.92E-05
obs_pp 3.09E-03 1.98E-05 1.82E-05 1.83E-05 -4.05E-02 1.64E-05 6.02E-06 6.00E-06
obs_pg 3.22E-03 2.11E-05 1.98E-05 1.98E-05 -4.30E-02 3.75E-05 7.81E-06 7.77E-06
obs_r 2.90E-04 2.21E-06 6.01E-08 5.14E-08 2.48E-05 -1.46E-06 2.79E-07 2.07E-07
obs_c 2.15E-03 1.45E-05 3.06E-04 3.80E-04 -4.84E-03 -2.67E-02 -5.15E-04 -6.29E-04

Se
co

nd

obs_i 6.11E-03 2.39E-05 2.47E-05 2.48E-05 -4.05E-02 -8.41E-06 1.25E-05 1.25E-05
obs_pp 8.87E-05 7.13E-06 -6.11E-06 -6.18E-06 -3.42E-03 1.61E-05 -7.80E-07 -8.86E-07
obs_pg 2.35E-04 8.35E-06 -4.18E-06 -4.27E-06 -6.15E-03 2.94E-05 1.13E-06 1.01E-06
obs_r 2.90E-04 2.21E-06 5.83E-09 -3.43E-09 2.56E-05 -1.46E-06 2.84E-07 2.12E-07
obs_c 5.89E-04 1.00E-05 -1.95E-04 -1.96E-04 -9.77E-03 5.80E-04 3.75E-04 4.62E-04

Se
co

nd
 la

gg
ed

obs_i 6.41E-05 1.06E-05 -1.17E-05 -1.18E-05 -3.42E-03 2.87E-05 -5.98E-06 -6.12E-06
RMSE of first moments 9.50E-05 3.63E-05 1.51E-01 6.54E-02 6.31E-04 3.64E-05
RMSE of second moments 6.70E-04 6.75E-04 2.58E-02 5.45E-03 1.27E-04 1.43E-04
RMSE of second lagged moments (1
lag) 4.64E-04 4.68E-04 1.13E-02 1.11E-03 1.13E-04 1.30E-04

RMSE of all second moments (4 lags) 3.64E-04 3.67E-04 1.29E-02 2.70E-03 8.02E-05 8.82E-05
RMSE of all moments 3.58E-04 3.60E-04 3.22E-02 1.31E-02 1.47E-04 8.68E-05

RMSE of parameters estimation by the indirect inference (DSGE-VAR with 4 lags) with

different moment’s calculation techniques presented at the table 3. RMSE for the GMM
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approach presented at the table 4. It should be noted that the indirect inference with moments

calculated by the NAHM2 or the ZAHM2 with 2 iterations produce errors covariance matrix

which is not positive-definite. Thus, RMSE of the indirect inference presented only for 5 and 10

iterations.  The  results  for  the  ZAHM3  are  not  presented  due  to  computational  expense  of  this

approach (the ZAHM3 with 5 iterations requires about 21 second; it requires about 11 seconds

for 2 iterations what is much higher than the CDKF).

TABLE 3. The RMSE of parameters estimation

the linear
likelihood the CDKF

DSGE-VAR(4)
 the NAHM2,

10 iter.

DSGE-VAR(4)
 the NAHM2,

5 iter.

DSGE-VAR(4)
the ZAHM2,

10 iter.

DSGE-VAR(4)
 the ZAHM2,

5 iter.
Std of A,B 1.18E-04 8.93E-05 3.83E-05 5.22E-05 1.13E-02 1.06E-03
Std of A,C 6.66E-02 1.51E-02 8.01E-03 1.21E-02 1.60E-02 1.43E-02
Std of A,S 1.94E-03 5.41E-03 2.76E-03 1.98E-03 9.51E-03 6.58E-03
Std of B 7.13E-02 4.41E-02 6.96E-03 6.98E-03 1.38E-01 6.64E-02
Std of D 1.87E-02 4.50E-03 7.15E-03 8.93E-03 1.09E-02 1.03E-02
Std of I 1.31E-02 3.96E-02 1.08E-02 4.51E-03 4.11E-03 3.49E-03
Std of P 1.86E+00 3.73E-03 7.16E-03 5.30E-03 1.84E-02 2.08E-02

ln( ) 3.01E-02 5.45E-03 3.16E-03 2.58E-03 3.65E-03 4.48E-03
8.13E-02 1.58E-03 1.50E-03 1.54E-03 2.12E-02 3.47E-02

0,B 8.21E-02 3.50E-01 1.26E-01 3.10E-01 3.85E-01 3.73E-01
0,D 2.15E-03 1.66E-03 1.80E-03 2.35E-03 3.42E-03 3.17E-03
0,I 2.14E-01 1.35E+00 2.62E-01 4.78E-01 9.31E-01 3.12E-01
0,P 2.11E-03 3.99E-03 3.85E-03 2.39E-03 1.75E-03 9.07E-04

1,AB 1.74E-01 1.98E-01 9.39E-03 8.72E-03 9.92E-02 2.16E-01
1,AC 1.15E-01 1.05E-01 6.36E-04 2.03E-01 1.19E-01 2.03E-01
1,AS 2.75E-01 1.71E-01 9.06E-02 6.92E-02 3.92E-01 3.75E-01
1,B 2.91E-02 2.78E-01 1.33E+00 1.47E+00 5.92E-01 4.68E-01
1,D 1.90E-01 1.35E-01 1.55E-01 1.28E-01 1.61E-01 1.68E-01
1,I 1.15E-02 1.91E-02 9.80E-03 6.46E-03 1.34E-01 8.07E-02
1,P 1.50E-01 5.07E-01 7.16E-01 8.11E-01 7.34E-01 5.10E-01

Sum of RMSE 3.39E+00 3.23E+00 2.75E+00 3.53E+00 3.79E+00 2.87E+00
Sum of MSE 3.72E+00 2.37E+00 2.39E+00 3.20E+00 2.15E+00 9.86E-01

Time for
likelihood
calculation

(sec)*

0.03 3.95 0.44 0.25 0.125 0.078

*PC used: Intel core 2 Duo E8400 3 GHz, 1 Gb RAM, Windows XP.

It should be noted that a few parameters have much higher RMSE for each approach

which mean that its influence is critical for such measure as sum of MSE. The indirect inference

with the ZAHM2 with 5 iterations produces extremely high quality of estimation. The reason is a

high amount of local extremums (many parameters values produce errors covariance matrix
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which is not positive-definite). About half of cases produce low value of log-likelihood function

(local extremums which are close to the initial values (true values), produce low RMSE).

The NAHM2 with 10 iterations produces the best quality according to sum of RMSE.

However, the ZAHM2 with 10 iterations produces the best quality according to sum of MSE.

The CDKF is the second best for the both measures of quality. It should be noted that the

NAHM2 with 10 iterations has almost the same sum of MSE as the CDKF.

Unexpected result is that the ZAHM2 is better than the NAHM2 for estimation purpose

(GMM with  2  and  5  iterations)  despite  worse  quality  of  moments  calculation.  The  NAHM2 is

better than the ZAHM2 (GMM with 10 iterations) according to the one of quality measures. An

advantage of the indirect inference over the GMM is expectable [Creel and Kristensen (2011)].

TABLE 4. The RMSE of parameters estimation (GMM)
GMM

the NAHM2
10 iter

GMM
the NAHM2

5 iter

GMM
the NAHM2

2 iter

GMM
the ZAHM2

10 iter

GMM
the ZAHM2

5 iter

GMM
the ZAHM2

2 iter
Std of A,B 8.94E-03 1.06E-02 2.00E-02 2.25E-02 1.52E-02 1.54E-02
Std of A,C 1.18E-02 2.02E-02 1.83E-02 2.10E-02 1.32E-02 1.72E-02
Std of A,S 1.76E-03 2.66E-03 4.12E-03 2.79E-03 6.04E-04 1.29E-03
Std of B 1.50E-02 4.11E-02 7.58E-02 2.65E-02 4.38E-02 6.21E-02
Std of D 3.68E-02 3.44E-02 4.22E-02 4.31E-02 3.61E-02 4.70E-02
Std of I 2.34E-02 2.84E-02 2.31E-02 1.96E-02 2.28E-02 2.32E-02
Std of P 2.23E-02 1.58E-02 2.56E-03 1.39E-02 5.93E-03 5.55E-03

ln( ) 2.59E-03 2.85E-03 3.47E-03 2.84E-03 1.96E-03 2.74E-03
1.04E-01 1.66E-01 2.88E-01 1.96E-01 1.92E-01 4.72E-01

0,B 4.18E-01 5.85E-01 7.67E-01 6.08E-01 1.07E+00 9.36E-01
0,D 2.02E-03 1.49E-03 2.52E-03 2.58E-03 2.15E-03 2.40E-03
0,I 2.32E+00 3.61E+00 4.78E+00 1.82E+00 2.56E+00 4.54E+00
0,P 6.93E-04 6.43E-04 1.28E-03 1.64E-03 1.27E-03 5.58E-03

1,AB 1.04E+00 1.12E+00 1.09E+00 9.43E-01 1.03E+00 9.00E-01
1,AC 5.51E-01 6.31E-01 7.81E-01 6.83E-01 7.55E-01 5.00E-01
1,AS 5.78E-02 3.41E-01 5.21E-01 5.00E-01 3.73E-02 6.12E-01
1,B 1.38E+00 1.28E+00 1.06E+00 1.16E+00 1.24E+00 1.06E+00
1,D 8.48E-01 8.56E-01 9.18E-01 9.77E-01 9.78E-01 1.04E+00
1,I 6.66E-01 8.81E-01 5.79E-01 6.53E-01 8.58E-01 7.45E-01
1,P 4.80E-01 5.92E-01 7.81E-01 6.21E-01 6.79E-01 7.18E-01

Sum of RMSE 7.99E+00 1.02E+01 1.18E+01 8.32E+00 9.54E+00 1.17E+01
Sum of MSE 1.02E+01 1.87E+01 2.85E+01 8.45E+00 1.31E+01 2.65E+01

Time for
likelihood

calculation(sec)*
0.44 0.25 0.125 0.125 0.078 0.047

*PC used: Intel core 2 Duo E8400 3 GHz, 1 Gb RAM, Windows XP.
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The speed of likelihood functions calculations for normal approximations of higher

moments (the NAHM2) is between linear-likelihood and the CDKF-likelihood. For the ZAHM2

the speed is almost the same as for linear-likelihood.

5. Conclusions

This article suggests the new approach to approximation of nonlinear DSGE models

moments. These approximations are fast and accurate enough to use them for an estimation of

parameters of nonlinear DSGE models (it produces a more accurate estimation of moments than

simulation of 100 000 sample). Existing method of approximation of nonlinear DSGE models

moments (Monte-Carlo simulations) is 32 to 112 times slower than the suggested approaches

(depending on version).

The suggested approaches are 9 (0.44 sec.) or 31 (0.125 sec.) times faster (depending on

version) than the CDKF (3.95 sec.). Combination of the suggested approaches with the GMM

doesn’t produce high quality estimation, but combination of the suggested approaches with

indirect  inference  has  almost  the  same  quality  as  the  CDKF.  One  of  quality  measure  (sum  of

RMSE) is 17.5% (3.79) worse or 15.0% (2.75) better (depending on version) than the CDKF

(3.23). Another measure (sum of MSE) is 0.7% (2.39) worse or 9.4% (2.15) better (depending on

version) than the CDKF (2.37). Thus, the suggested approaches are close in the terms of

estimation quality but much faster than one of the best existing nonlinear estimation approaches

(the CDKF).
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