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Abstract

This article suggests the new approach to an approximation of nonlinear DSGE models
moments. This approach is fast and accurate enough to use it for an estimation of nonlinear
DSGE models. The small financial DSGE model is repeatedly estimated by several
modifications of suggested approach. Approximations of moments are close to the results of
large sample Monte Carlo estimation. Quality of parameters estimation with suggested approach
is close to the Central Difference Kalman Filter (the CDKF) based. At the same time suggested
approach is much faster.
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1. Introduction

Modern macroeconomics seeks to explain the aggregate economy using theories based on
strong microeconomic foundations. The advantage of such an approach is a description of
models in terms of “deep structural” parameters that are not influenced by economic policy
[Wickens (2008)]. Nevertheless, these parameters should be estimated for usage of DSGE
models. There are different econometric techniques for models estimation but empirical studies
have concentrated their attention on an estimation of first-order linearized DSGE models [Tovar
(2008)].

Non-linear approximations of DSGE models have several important advantages, in
particular, they allow uncertainty to influence economic choices [Ruge-Murcia (2012)].
Parameters drifting and stochastic volatility are examples of important elements that are
essentially worthless with linear approximations [Fernandez-Villaverde, Guerron et al. (2010)].
Linear approximation of DSGE models behavior may significantly differ from higher order
(more accurate) approximations [Collard and Juillard (2001)]. Second order approximation
makes difference between the models and the approximation behavior much smaller. There are a
few methods for non-linear approximations of DSGE models, but the perturbation method is the
most widely used [Schmitt-Grohe and Uribe (2004)]. Thus advantages of non-linear
approximations are known and techniques for approximations are developed. However, these
advantages can not be fully implemented due to lack of estimation techniques for non-linear
approximations (existing techniques are too computationally expensive for usage of them with
medium-scale DSGE models).

There are two main approaches for an estimation of DSGE models: moments based and
likelihood based [DeJong and Dave (2007), Canova (2007)]. The likelihood based approaches
use non-linear filters for the construction of the likelihood function. The first of them is the
particle filter. This tool could produce all advantages of nonlinear approximation, including

sharper the likelihood function and smaller variance of parameters estimator [An and
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Schorfheide (2006), Fernandez-Villaverde, Guerron et al. (2010)]. However, the particle filters
have some disadvantages: the likelihood evaluation with the particle filter is a random variable
(each evaluation of the likelihood for the same model and observations produces different value).
Thus usual maximization algorithms can’t be used and Markov Chain Monte Carlo inefficiency
greatly increases - Pitt, Silva et al. (2012) show that number of draws should be 10 (from 5 to
400 depending on the number of particles) times higher for the same accuracy of MCMC.

There are alternative filters that can be used for the likelihood calculation. For example,
Andreasen (2008) has shown an advantage of the Central Difference Kalman Filter over a few
versions of particle filter (in terms of the quality and computing time (100 times faster)). The
Quadratic Kalman Filter has an advantage in the quality with some loss in computing time over
the Unscented Kalman filter (Julier and Uhlmann (1997)) and the Central Difference Kalman
Filter (Ivashchenko (2013)).

Moments based approaches for estimation of DSGE models are more robust [Ruge-
Murcia (2007), Creel and Kristensen (2011)]. The first of them is the instrumental variables
approach which is a special case of the generalized method of moments [Canova (2007)]. All
variables of the DSGE model should be observed for usage of this approach. It can be true only
for small-scale DSGE models. Another version of the GMM is used for a linearized model
because a wide range of empirical targets can be calculated analytically [DeJong and Dave
(2007)]. The simulated method of moments has almost the same statistical efficient as the GMM,
but it is more computational demanding [Ruge-Murcia (2007)]. The SMM can be implemented
for non-linear DSGE models [Ruge-Murcia (2012), Kim and Ruge-Murcia (2009)]. But it’s too
slow for an estimation of medium-scale or large-scale models that are used for policymaking.
Another moments based approach is the indirect inference. Theoretically it’s more efficient than
the GMM [Creel and Kristensen (2011)]. The usage of the indirect inference is more complicated
than the GMM, because it requires knowledge of the moments distribution function. It can be

calculated easily only for a narrow range of moments (usually it is parameters estimation of an



econometric model, example is DSGE-VAR model). So, usually this approach is described
differently [DeJong and Dave (2007)].

This article suggests an approach for a fast calculation of non-linear DSGE model’s
moments. This moments calculations are compared with alternative approaches. A small non-
linear DSGE model is estimated with moments based approaches. The quality of such
estimations is compared with linear maximum likelihood estimation and the CDKF based quasi-

maximum likelihood estimation.

2. The approach for moments calculation

The equation (1) describes the data generating process for state variables (X;) which is
approximation of a rational expectation model with perturbation method. Exogenous shocks (&)
have normal distribution with covariance matrix Q. and mean equal zero. The measurement
equation (2) describes the dependence of observed variables (Y;) on state variables and

measurement errors (u;) that have normal distribution with zero mean and covariance matrix Q.
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The measurement equation (2) is linear, therefore dependence between moments of
observed variables (Y;) and state variables (X;) is standard. Equations for first and for second
moments of state variables (3)-(5) are more complicated.
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where Q.. is the fourth moment of vector &, Ix is identity matrix of the same size as state
variables vector (X;), Uexe xee and Uxexe_gexx are permutation matrixes that describe dependence
between vectors indicated in the subscript (equation (6) is an example):
6 ®X, ®¢ =Upge yee(X, @2, ®¢) (6)
The equation (7) shows matrix formula for calculation of the fourth moment (for &):
1) = vec(vec(Q,;n_;n. ) ®vec(Q,;n>1) +
2. 4 (7)
vec(Q,;n,;n,) ®vec(Q2,;n,;n,) +vec(Q,;n,;n,) ®vec(2,1n;);n;51)
where n, is the number of elements in the vector &, vec(M;n;m) is the vectorization function that

transforms matrix M to matrix with n rows and m columns.
The solution of the equation (3) requires knowledge of vector’s X; second moment. The

vec(Q,;n?; .

equation (4) for the second moment requires knowledge of the third and the fourth moments. So,
it is impossible to solve these equations directly. There are some approaches for approximation
of equation (3)-(5) solution. The key question is what to do with higher order moments. The first
way is to approximate the higher order moments (normal distribution would be used for this
approximation). The second way is to assume that the higher order moments are equal to zero.

Equations (8)-(9) are the formulas for the third and the fourth moments of normal

distribution:
E(X, @X, ®@X,)=py @ uy @y +Qy @ puy + ®)
Hy ®Qy +Uxux_uxx (,Ux ®Qx)
E(X, ®@X, ®X, ®X,)=py @iy ®puy ®py +Qy ®py @ uy +
Uxuxu_,mxx (,ux ® py ®Q, )+Ux,mx_,mxx (,ux ® iy ®Qx)+ )

UuXXu_quX (,ux @ py ®Q, )+U,1xux_m1xx (,ux @ py ®Q )+
Hy @ pry @Oy +Qyy
where uy is the first moment of a vector X;, Qx is the second central moment of a vector X, Oxx

is the fourth central moment of a vector X..
Equations (3)-(4) with normal approximation of the higher order moments are nonlinear

(in moments). Analytical solution of a large non-linear system is problematic. Thus numeric

solution is required. The simple numeric method is used:

Hx k1= By Hx k +C+ Axx:uXX,k +A,.Q, (10)



Hxxor = (Bx @ By )ty +(By @ Chpay  + (By @ Ay Yy i +
(Bx ® Agg)(,ux,k ®Q,)+(B,®B,)Q, +(B, ®A,,)U EXE_XEE(;ux,k ®Q,)+
(COBy )y +COCH(COA )y +(COA,)Q, +
(Axx @ By ) ttux s + (Asx ®C) i + (Axx @ AL ) (lix @2, ) + (11)
(Ax. @B, )(tx i ®€, )+ (Ayx, @ Ay, )Uxexe eexx (€2 @ L) +
(A, @B )(Q, ®py )+ (A, ®C)Q, + (A, @ALNQ, @ty )+
(A OAL)Q, + (Axx @ Ay ) Hyxxx k
where uxk, txxk Uxxxk txxxxk are the first, the second, the third and the fourth moments of a

vector X; after iteration k.

It should be noted that only a few iterations can be calculated due to computational costs.
It means that general properties of the convergence are less important. The numerical
comparisons of moments and estimation based on them are made instead of it.

The equation (5) can be solved without numerical approximation (just with normal
approximation of third moment of vector [X¢;Xts]). This approach would be called the normal
approximation of the higher than 2" moments (the NAHM?2).

Alternative approach (where the higher order moments are zeros) is also used in this

article. Due to lower computational costs the third moment of X; can be calculated (large formula

(12)).
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(12)

The equation for the third moment (with zero higher moments) is linear in the moments
of state variables X;, but it is a large scale equation. Equation for the second moments is
Lyapunov equation and there are special algorithms for solving it. The equation for the third
moments is large and there are no special algorithms (which use specific structure of matrixes)
for solving it. This is why the same iteration algorithm is used for moments calculation. This
approach would be called the zero approximation of the higher than 3 moments (the ZAHM3).
The case with zero approximation of the higher than the second moment is calculated too (the
ZAHM?2). It should be noted that difference between the NAHM2 and the ZAHM2 is 3 of 20
sum components in the dispersion formula (11).

The suggested approaches use properties of exogenous shocks (&;) normal distribution for

calculation of exogenous shocks higher moments. It means that these approaches can be easily



modified for other distribution of exogenous shocks. However, an approximation of a rational
expectation model with the perturbation method (1) can have infinite unconditional moments if
shocks have heavier tails such as t-distribution. The reason is following: t-distribution has
infinite higher moments (depending on degrees of freedom); formula (1) means that X; depend
on ()% (ev1)”, (er2)® and so on. Thus, the suggested approaches can be modified for non-normal

distribution of exogenous shocks, if all moments of this distribution are finite.

3. Comparison techniques

Finance is one of those areas where linear approximation of DSGE models is unsuitable.
Therefore a finance model is used here for comparing different estimation approaches. The same
model as [Ivashchenko (2013)] is used (but with additional observed variables). Households
maximize the expected utility function (13) with budget constraint (14). There are 3 types of an
expenditure: consumption (Ct) with exogenous price (Zp;), one period bonds (B;), and stocks
(Xy), the price of which is S;. There are 3 sources of income: exogenous income (SiZ,1), bonds
with interest that were bought one period ago (Rw1 Bt1), and stocks with dividend that were
bought one period ago (Xi.1(St+Dy)).

E, i B (N — max
=0

7/ C;B;X (13)
ZP,tCt + Bt + XtSt = Rt—lBt—l + Xt—l(st + Dt)+ StZI,t (14)

This model suggests that dividend growth is exogenous (15), the bond amount is set by

government (16), and amount of stocks is equal to 1 (17).

2. =2y,

Dy ' (15)

B, = ZB,tSt (16)
X =1 (17)

The model (13)-(17) is transformed into (18)-(22) where stationarized variables are used.

Table 1 shows the relation between the original and stationarized variables.



TABLE 1. The DSGE model variables

Variable Description Stationary variable
Bt Value of bonds bought by households at period t b, =B, /S,
Ct Consumption at time t ¢, =In(z,,C./S,)
D Dividends at time t d, =In(D, /S,)
Ry Interest rate at time t r=In(R,)
S Price of stocks at time t s, =In(s,/S,,)
Xt Amount of stocks bought by households at period t X, = X,
Ay Lagrange multiplier corresponding to budget 2 = A,

restriction of households at period t

Exogenous process corresponding to near-

. > . . ... z =7
Zag: rationality of households with their bond position ABL T TABL
7 Exogenous process corresponding to near- ;=7
ACL rationality of households with their consumption AL TAC
7 Exogenous process corresponding to near- ;=7
ASE rationality of households with their stocks position AL TAC
7 Exogenous process corresponding to bond amount ;. =7
Bl sold by the government Bt T 7B
7 Exogenous process corresponding to growth of ;=7
D!t dividends Dt 7Dt
7 Exogenous process corresponding to income of ;. =7
"t households T
Zpy Exogenous process corresponding to price level Zpy = In(Z pr/ ZPH)
ks J’i(Si*ZP,i) et
E, ) B'e @ (—y — max
=0 Y cibix (18)
e +b +x =e""b + xt71(1+ e )+ Z, (19)
dt - dt—l +S =1py (20)
bt = Lp, (21)
%=1 (22)

The optimal conditions of (18)-(19) problems with additional exogenous processes (zas:,
ZaBt Zacy) are the following:

eA'IJrZA,S,l -E eﬂuﬁ'”(ﬂ)*?(surzp,m)(l+ ed”l)
t

(23)
eﬂ1+ZA,B,1 — Eteﬂul“i*51+1+|”(ﬂ)+7(51+rzp,1+1) (24)
Y =4 +C + Zpct (25)

An additional exogenous process (zast Zagt Zact) can be interpreted as near-rational
households (these processes have zero mean). Another interpretation is a compensation of
approximation errors (these processes allows the use of a linear approximation for parameter

estimation). All the exogenous processes are AR(1) with the following parameterization:
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Loy =gy (- 771,*,t) FMxpogg T Exy (26)
The model parameters are estimated with indirect inference approach (DSGE-VAR with

4 lags and 5 iterations with zero higher than second moments). Monthly data (Average rate on 1-
month certificates of deposit; MSCI USA price return; MSCI USA gross return; personal
consumption expenditures; compensation of employees) from January 1975 till December 2012
is used. Estimated values are used for generating observations.

The following two approaches are used for comparison of the moments estimation
techniques. The first of them is a comparison of moments approximations with a usual
simulation based approach for moment’s calculation (it should be more accurate in case of a
large sample simulation). The second approach is a comparison of estimation error (generation
of the observed variables by the DSGE model and the estimation of models with different
moments based approaches).

The DSGE model is simulated for 100 000 observations. The moments are calculated.
This procedure is repeated 10 times. Mean and standard deviation of the moments are reported.
Deviations from this moment’s mean (errors) are reported for each approach.

The following procedure is used for comparison of the estimation results:

1. Generation of 400 observations (600 and drop of the first 200 observations) from the second-
order approximation of model

2. Parameters estimation by different approaches (linear maximum likelihood; the CDKF based
maximum likelihood; the indirect inference maximum likelihood and the GMM with
different moment’s calculation approaches). The true values of parameters are used as the
initial values.

3. Steps 1-2 are repeated 100 times.

The indirect inference maximum likelihood is DSGE-VAR (with infinite weight of prior
parameter) maximum likelihood estimation (Del Negro and Schorfheide (2004)). The Newey-
West estimator (with window equal 7~4(T/100)%°)) is used for calculation of moments variance

for the GMM [Hamilton (1994)].
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The CDKF is used as a benchmark nonlinear estimation technique because it has
advantage over other approaches (in terms of speed with appropriate quality) that are well known

in DSGE literature [Andreasen (2008), Ivashchenko (2013)].

4. The results

Table 2 shows the results of moment’s estimation. All approaches have very high errors
after the first iteration, but these errors greatly decrease after the second iteration (to the same
level for each approach). The errors after 5 and 10 iterations are very close that indicates fast
convergence. It should be noted that the errors of all approaches are close to errors of mean over
100 000 sample (for the most of the moments errors are smaller than standard deviation). This
indicates a very high quality of such simple moment approximations. Thus suggested approaches
produce more accurate estimation of the moments than existing approach (simulation) and
require less computer time (14 sec. for simulation and less than 1 second for the NAHM2 and the
ZAHM?2). The quality of the NAHM2 and the ZAHM3 is almost the same. The quality of the
ZAHM2 is 3-4 times worse after 5-10 iterations.

It should be noted that the RMSE of all moments for the ZAHM2 with 10 iterations is a
little bit worse than ones with 5 iterations. A more detailed view shows that RMSE of the first
moments are much smaller for 10 iterations case, but RMSE of second moments is a little bit
higher for 10 iterations case. There are only 5 first moments and 115 second moments (including
all 4 lags); therefore influence of the second moments is higher for the RMSE of all moments.
This difference can be more important for the GMM approach due to smaller variance of the
second moments (which means higher weight of second moments). This effect can be important
for the NAHM2 and the ZAHM3 because there are a few moments that have higher errors in 10
iterations case than in 5 iterations case (it can make score function of the GMM with 5 iterations

better than with 10 iterations for some weight matrixes).
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TABLE 2. The DSGE model moments estimation

Mean Std NAHMZ ZAHM2

iteration 1 5 5 10 1 5
number

obs_pp 9.32E-03 176E-04 -192E-01 B8.18E-04 199E-05 189E-05 -1.92E-01 8.18E-04

obs pg 157E-02 170E-04 -1.92E-01 B871E-04 7.53E-05 7.42E-05 -192E-01 8.71E-04

obs r  169E-02 6.56E-05 7.51E-04 -3.99E-05 B8.72E-06 4.99E-06 7.51E-04 -3.99E-05
% obsc 9.32E-03 1.76E-04 -588E-02 -1.46E-0L B8.04E-04 1.66E-05 -5.88E-02 -1.46E-01
T “obsi 932603 176E-04 -1.92E-01 8.19E-04 2.02E-05 192E-05 -1.92E-01 8.18E-04

obs_pp 3.09E-03 198E-05 -405E-02 155E-05 5.96E-08 5.98E-06 -4.05E-02 4.76E-05

obs pg 3.22E-03 2.11E-05 -430E-02 366E-05 7.74E-08 7.75E-06 -4.30E-02 6.77E-05
= obsr 290E-04 221E-06 248E-05 -151E-06 269E-07 142E-07 2.48E-05 -1.36E-06
S obsc 20503 1.45E-05 -5.30E-08 -2.85E-02 -8.35E-04 -B.OTE-04 -4.84E-03 -2.41E-02
% “obsi 6.11E-03 2.39E-05 -405E-02 -9.33E-06 1.25E-05 1.25E-05 -4.05E-02 2.29E-05
=  obspp 887E05 7.13E-06 -342E-03 190E-05 411E-08 3.29E-08 -3.44E-03 1.23E-06
% obs pg 2.35E-04 8.35E-06 -6.15E-03 3.20E-05 192E-06 1.89E-06 -6.17E-03 1.43E-05
T Obsr 200E-04 221E-06 256E-05 -137E-06 280E-07 153E-07 255E-05 -139E-06
8 _obsc 589E-04 100E-05 -9.48E-03 450E-03 4.15E-04 386E-04 -857E-03 -135E-03
9 obsi  641E-05 106E-05 -3.42E-03 3.16E-05 -522E-06 -5.20E-06 -344E-03 1.14E-05
RMSE of first moments 151E-01 6.54E-02 3.62E-04 3.61E-05 151E-01 6.54E-02
RMSE of second moments 258E-02 5.80E-03 1.79E-04 1.75E-04 2.58E-02 5.18E-03
IF;';’;SE of second lagged moments (14 43¢ ) 1 77E-08  9.15E-05 8.46E-05 1.03E-02 1.04E-03
RMSE of all second moments (4 lags)  1.29E-02 2.87E-03 9.02E-05 8.71E-05 1.27E-02 2.55E-03
RMSE of all moments 322E-02 131E02 L113E-04 B857E05 3.22E-02 1.31E-02

TABLE 2 (continued). The DSGE model moments estimation

Mean Std ZAHM?2 ZAHM3

Iteration 5 10 1 2 5 10
number

obs pp 9.32E-03 1.76E-04 201E-05 189E-05 -192E-01 B8.18E-04 202E-05 1.89E-05

obs pg 157E-02 170E-04 752E-05  7.40E-05 -192E-01 8.71E-04 7.56E-05 7.42E-05

obs r  169E-02 6.56E-05 8.60E-07  588E-07  751E-04 -3.99E-05 8.87E-06 6.73E-06
% obsc 932E-03 176E-04 -197E-04  190E-05 -5.88E-02 -146E-01 -1.41E-03 1.84E-05
T “opsi  9.32E-03 1.76E-04 204E-05  192E-05 -192E-01 8.18E-04 2.05E-05 1.92E-05

obs pp  309E-03 198E-05 1.82E-05 183E-05 -405E-02 1.64E-05 6.02E-06  6.00E-06

obs pg 3.22E-03 211E-05 198E-05 198E-05 -4.30E-02 3.75E-05 7.81E-06 7.77E-06
= obsr  200E-04 221E-06 601E-08  5.14E-08  248E-05 -1.46E-06 2.79E-07 2.07E-07
S Tobsc 25E:03 145E-05 3.06E-04  3.80E-04  -4.84E-03 -2.67E-02 -5.15E-04 -6.29E-04
9 “obsi  6.11E-03 2.39E-05 247E-05  248E-05 -4.05E-02 -841E-06 1.25E-05 1.25E-05
- obspp B887E-05 7.13E-06 -6.11E-06 -6.18E-06 -342E-03 1.61E-05 -7.80E-07 -8.86E-07
& obspy 235E-04 B8.35E-06 -418E-06 -427E-06 -6.15E-03 294E-05 113E-06 101E-06
= obsr  290E-04 221E-06 5.83E-09  -343E-09  256E-05 -1.46E-06 2.84E-07 2.12E-07
S obsc 589E-04 100E-05 -195E-04 -1.96E-04 -9.77E-03 580E-04 3.75E-04 4.62E-04
# obsi  641E-05 106E-05 -117E-05 -1.18E-05 -3.42E-03 2.87E-05 -598E-06 -6.12E-06
RMSE of first moments 950E-05  3.63E-05 151E-0L 654E-02 6.31E-04 3.64E-05
RMSE of second moments 6.70E-04  6.75E-04  2.58E-02 5.45E-03 1.27E-04 1.43E-04
IF;Z’;SE of second lagged moments (1 4 g4 04 468E-04  113E-02 1.11E-03 113E-04 1.30E-04
RMSE of all second moments (4 lags)  3.64E-04  3.67E-04  120E-02 2.70E-03 8.02E-05 8.82E-05
RMSE of all moments 358E-04  3.60E-04  322E-02 13lE-02 147E-04 8.68E-05

RMSE of parameters estimation by the indirect inference (DSGE-VAR with 4 lags) with

different moment’s calculation techniques presented at the table 3. RMSE for the GMM
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approach presented at the table 4. It should be noted that the indirect inference with moments
calculated by the NAHM2 or the ZAHM2 with 2 iterations produce errors covariance matrix
which is not positive-definite. Thus, RMSE of the indirect inference presented only for 5 and 10
iterations. The results for the ZAHMS3 are not presented due to computational expense of this
approach (the ZAHM3 with 5 iterations requires about 21 second; it requires about 11 seconds

for 2 iterations what is much higher than the CDKEF).

TABLE 3. The RMSE of parameters estimation
DSGE-VAR(4) DSGE-VAR(4) DSGE-VAR(4) DSGE-VAR(4)

|tir|]<i||ilr?§g<rj the CDKF  the NAHM2, ~the NAHM2, the ZAHM2, the ZAHM2,
10 iter. 5 iter. 10 iter. 5 iter.
Std of eag 1.18E-04 8.93E-05 3.83E-05 5.22E-05 1.13E-02 1.06E-03
Std of gac 6.66E-02 1.51E-02 8.01E-03 1.21E-02 1.60E-02 1.43E-02
Std of €as 1.94E-03 5.41E-03 2.76E-03 1.98E-03 9.51E-03 6.58E-03
Std of e5 7.13E-02 4.41E-02 6.96E-03 6.98E-03 1.38E-01 6.64E-02
Std of &p 1.87E-02 4.50E-03 7.15E-03 8.93E-03 1.09E-02 1.03E-02
Std of &, 1.31E-02 3.96E-02 1.08E-02 451E-03 4.11E-03 3.49E-03
Std of & 1.86E+00 3.73E-03 7.16E-03 5.30E-03 1.84E-02 2.08E-02
In(3) 3.01E-02 5.45E-03 3.16E-03 2.58E-03 3.65E-03 4.48E-03
y 8.13E-02 1.58E-03 1.50E-03 1.54E-03 2.12E-02 3.47E-02
Nos 8.21E-02 3.50E-01 1.26E-01 3.10E-01 3.85E-01 3.73E-01
nop 2.15E-03 1.66E-03 1.80E-03 2.35E-03 3.42E-03 3.17E-03
o, 2.14E-01 1.35E+00 2.62E-01 4.78E-01 9.31E-01 3.12E-01
Nop 2.11E-03 3.99E-03 3.85E-03 2.39E-03 1.75E-03 9.07E-04
1108 1.74E-01 1.98E-01 9.39E-03 8.72E-03 9.92E-02 2.16E-01
Nac 1.15E-01 1.05E-01 6.36E-04 2.03E-01 1.19E-01 2.03E-01
Ms 2.75E-01 1.71E-01 9.06E-02 6.92E-02 3.92E-01 3.75E-01
s 2.91E-02 2.78E-01 1.33E+00 1.47E+00 5.92E-01 4.68E-01
o 1.90E-01 1.35E-01 1.55E-01 1.28E-01 1.61E-01 1.68E-01
n 1.15E-02 1.91E-02 9.80E-03 6.46E-03 1.34E-01 8.07E-02
nup 1.50E-01 5.07E-01 7.16E-01 8.11E-01 7.34E-01 5.10E-01
Sum of RMSE  3.39E+00 3.23E+00  2.75E+00  3.53E+00  3.79E+00  2.87E+00
Sumof MSE  3.72E+00 237E+00  2.39E+00  3.20E+00  2.15E+00 9.86E-01
Time for
likelihood
caloulation 0.03 3.95 0.44 0.25 0.125 0.078
(sec)*

*PC used: Intel core 2 Duo E8400 3 GHz, 1 Gb RAM, Windows XP.
It should be noted that a few parameters have much higher RMSE for each approach

which mean that its influence is critical for such measure as sum of MSE. The indirect inference
with the ZAHM2 with 5 iterations produces extremely high quality of estimation. The reason is a

high amount of local extremums (many parameters values produce errors covariance matrix
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which is not positive-definite). About half of cases produce low value of log-likelihood function

(local extremums which are close to the initial values (true values), produce low RMSE).

The NAHM2 with 10 iterations produces the best quality according to sum of RMSE.

However, the ZAHM2 with 10 iterations produces the best quality according to sum of MSE.

The CDKF is the second best for the both measures of quality. It should be noted that the

NAHM2 with 10 iterations has almost the same sum of MSE as the CDKF.

Unexpected result is that the ZAHM2 is better than the NAHMZ2 for estimation purpose

(GMM with 2 and 5 iterations) despite worse quality of moments calculation. The NAHM2 is

better than the ZAHM2 (GMM with 10 iterations) according to the one of quality measures. An

advantage of the indirect inference over the GMM is expectable [Creel and Kristensen (2011)].

TABLE 4. The RMSE of parameters estimation (GMM)

GMM GMM GMM GMM GMM GMM
the NAHM2  the NAHM2 the NAHM2 the ZAHM2 the ZAHM2  the ZAHM?2

10 iter 5 iter 2 iter 10 iter 5 iter 2 iter
Std of eap 8.94E-03 1.06E-02 2.00E-02 2.25E-02 1.52E-02 1.54E-02
Std of gac 1.18E-02 2.02E-02 1.83E-02 2.10E-02 1.32E-02 1.72E-02
Std of eas 1.76E-03 2.66E-03 4.12E-03 2.79E-03 6.04E-04 1.29E-03
Std of 5 1.50E-02 4,11E-02 7.58E-02 2.65E-02 4.38E-02 6.21E-02
Std of gp 3.68E-02 3.44E-02 4.22E-02 4.31E-02 3.61E-02 4.70E-02
Std of ¢, 2.34E-02 2.84E-02 2.31E-02 1.96E-02 2.28E-02 2.32E-02
Std of ep 2.23E-02 1.58E-02 2.56E-03 1.39E-02 5.93E-03 5.55E-03
In(p) 2.59E-03 2.85E-03 3.47E-03 2.84E-03 1.96E-03 2.74E-03
y 1.04E-01 1.66E-01 2.88E-01 1.96E-01 1.92E-01 4.72E-01
MoB 4.18E-01 5.85E-01 7.67E-01 6.08E-01 1.07E+00 9.36E-01
0.0 2.02E-03 1.49E-03 2.52E-03 2.58E-03 2.15E-03 2.40E-03
7o, 2.32E+00 3.61E+00 4.78E+00 1.82E+00 2.56E+00 4,54E+00
o p 6.93E-04 6.43E-04 1.28E-03 1.64E-03 1.27E-03 5.58E-03
718 1.04E+00 1.12E+00 1.09E+00 9.43E-01 1.03E+00 9.00E-01
NiAC 5.51E-01 6.31E-01 7.81E-01 6.83E-01 7.55E-01 5.00E-01
N1As 5.78E-02 3.41E-01 5.21E-01 5.00E-01 3.73E-02 6.12E-01
11,8 1.38E+00 1.28E+00 1.06E+00 1.16E+00 1.24E+00 1.06E+00
71D 8.48E-01 8.56E-01 9.18E-01 9.77E-01 9.78E-01 1.04E+00
711 6.66E-01 8.81E-01 5.79E-01 6.53E-01 8.58E-01 7.45E-01
n1p 4.80E-01 5.92E-01 7.81E-01 6.21E-01 6.79E-01 7.18E-01
Sum of RMSE 7.99E+00 1.02E+01 1.18E+01 8.32E+00 9.54E+00 1.17E+01
Sum of MSE 1.02E+01 1.87E+01 2.85E+01 8.45E+00 1.31E+01 2.65E+01

Time for
likelihood 0.44 0.25 0.125 0.125 0.078 0.047

calculation(sec)*

*PC used: Intel core 2 Duo E8400 3 GHz, 1 Gb RAM, Windows XP.
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The speed of likelihood functions calculations for normal approximations of higher
moments (the NAHM2) is between linear-likelihood and the CDKF-likelihood. For the ZAHM2

the speed is almost the same as for linear-likelihood.

5. Conclusions

This article suggests the new approach to approximation of nonlinear DSGE models
moments. These approximations are fast and accurate enough to use them for an estimation of
parameters of nonlinear DSGE models (it produces a more accurate estimation of moments than
simulation of 100 000 sample). Existing method of approximation of nonlinear DSGE models
moments (Monte-Carlo simulations) is 32 to 112 times slower than the suggested approaches
(depending on version).

The suggested approaches are 9 (0.44 sec.) or 31 (0.125 sec.) times faster (depending on
version) than the CDKF (3.95 sec.). Combination of the suggested approaches with the GMM
doesn’t produce high quality estimation, but combination of the suggested approaches with
indirect inference has almost the same quality as the CDKF. One of quality measure (sum of
RMSE) is 17.5% (3.79) worse or 15.0% (2.75) better (depending on version) than the CDKF
(3.23). Another measure (sum of MSE) is 0.7% (2.39) worse or 9.4% (2.15) better (depending on
version) than the CDKF (2.37). Thus, the suggested approaches are close in the terms of
estimation quality but much faster than one of the best existing nonlinear estimation approaches

(the CDKF).
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