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Abstract

In a recent article Canova et al. (2014) study the optimal choice of variables to use in the
estimation of a simplified version of the Smets and Wouters (2007) model. In this comment I
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1 Introduction

DSGE models are usually estimated using only a subset of the variables that are present in them. This

is partly due to the fact that some variables, such as capital, are not observed. However, even variables

for which data exist are often not utilized. One could explain this with the restriction that the number

of included observables should not be greater than the number of shocks in the model. While there are

ways to get around this restriction,1 it is a fact that in the literature there are similar DSGE models

estimated with different sets of observables. It is not clear what motivates these different choices, nor

what consequences that has on the empirical findings.

In a recent article Canova, Ferroni, and Matthes (2014) (CFM henceforth) seek to provide some

guidance on how to select the most informative among several available sets of observables. They

propose the use of two criteria which rank different combinations of variables according to measures of

identification and information content. The first criterion starts by selecting the sets of variables that

satisfy a rank condition for identification of the free model parameters. To pick the best among the

selected sets, measures of closeness to a convoluted singular system of all observables are computed in

terms of sensitivity of the log-likelihood function to parameters of interest. The one yielding smallest

discrepancy is chosen as the most informative. The second criterion is based on Bierens (2007) and uses

convolutions of both the singular and non-singular systems with the same non-singular distribution.

The combination of variables whose convoluted distribution is closest to the convoluted singular system

of all available observables is selected as being the most informative.

CFM apply their selection criteria to a simplified version of the Smets and Wouters (2007) model.

The model has 4 shocks and a total of 7 observables, namely output (yt), consumption (ct), investment

(it), wages (wt), hours (ht), inflation (πt), and nominal interest rate (rt). Thus, 35 combinations of

variables are available to use in estimation. Among these, as most informative overall the authors select

yt, ct, it and either wt or ht. Furthermore, it is argued that the ranking of different sets of variables

does not depend on the value of the parameters at which the model is evaluated, and is robust to

increasing the number of shocks as in the original Smets and Wouters (2007) model.

The purpose of this comment is to evaluate these claims, applying a different approach to the same

model. As in Iskrev (2010), where the choice of observables is studied with respect to the original

Smets and Wouters (2007) model, here I use criteria based on the expected Fisher information matrix

(FIM). Using the FIM has several advantages. First, as the name suggests, it is a measure of the amount

of information about the parameters available in a sample (see Rothenberg (1971)). It takes the model

as it is and does not require convoluting the true data density as the measures CFM use do.2 Second,

FIM depends on the set of observables and the sample size, but does not depend on actual data. Thus,

the information one could expect to have in different sets of observables and in samples of different

sizes can be measured and compared prior to estimation. Third, using the FIM one can compute

measures of expected estimation uncertainty with respect to each model parameter. In general, there

is a trade-off between the amount of information contained in different sets of observables with respect

1One is to introduce measurement errors in the observed series. Another is the approach in Bierens (2007).
2This approach follows Bierens (2007) where the theoretical model is assumed to be misspecified and the singular

distribution it implies is convoluted and compared to a convoluted distribution of an a-theoretical econometric model
which is assumed to represent the true data generating process.
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to different parameters. Quantifying the amount of information for each parameter provides a clearer

understanding of the trade-offs involved in selecting one set of observables over another. The measures

CFM use do not provide such information. And fourth, the FIM can be evaluated analytically for

linearized Gaussian model such as the one in Smets and Wouters (2007). This is very useful in practice

since it allows many possible combinations of variables to be compared quickly for a large number of a

priori plausible parameter values. Furthermore, the use of analytical derivatives minimizes the risk of

reaching wrong conclusions as a result of numerical errors.

2 Analysis

In this section I apply the FIM approach to the model analyzed in CFM. I address three main questions:

(1) is the rank condition useful for selecting the set of observables, (2) which is the most informative

set of four variables out of the seven available, (3) are the results sensitive to changes in the parameter

values and the number of shocks.

2.1 Is the rank condition useful?

I start by checking whether the parameters of the simplified SW model are identified if only four of

the seven variables are observed. It is well known that four parameters - ξw, ξp, ϵw and ϵp, are not

separately identifiable in the sense that in the linearized model ξw cannot be distinguished from ϵw,

and ξp cannot be distinguished from ϵp. As in the original paper, I will assume that ϵw and ϵp are both

known. This leaves 27 free parameters.

A necessary and sufficient condition for local identification is that the FIM has full rank. When

evaluated at the parameter values from Table 2 in CFM, the FIM has full rank of 27 for all 35 combi-

nations of four variables. Thus, the rank condition alone provides no useful information regarding the

best set of variables to use in estimating the model.

2.2 Which are the best four observables?

Selecting the best combination of variables requires a criterion according to which to compare and

rank the alternatives. Which criterion should be used depends on the purpose for which the model is

estimated. In any case, the criterion would be a function of the estimated parameters and would rank

higher sets of observables that are more informative about the relevant function of the parameters of

interest θ.

When the objective is to minimize the estimation uncertainty about θ as a whole, a popular criterion

to use is the natural logarithm of the determinant of the inverse of the FIM, i.e. ln(det(I−1(θ))). This

is known in the optimal design literature as D-optimality criterion. The well-known Cramér-Rao (CR)

theorem tells us that, depending on whether the asymptotic FIM is used or the finite sample one, its

inverse gives either a lower bound on the asymptotic covariance matrix of any consistent estimator of

θ, or a lower bound on the covariance matrix of any unbiased estimator θ. Furthermore, the diagonal

elements of I−1(θ) are lower bounds on the variances of estimators of individual parameters. This

can be used to construct a criterion which assigns different weights to the parameters, to reflect their
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relative importance for the researcher. An example of such a criterion is the weighted geometric average

of the diagonal elements of I−1(θ),

(
k∏

i=1

bwi
i

)1/
∑k

i=1 wi

(2.1)

where bi is the i-th diagonal element of I−1(θ), k is the number of free parameters, and wi is the

weight assigned to θi. The geometric average is more appropriate to use than the arithmetic average

since parameters typically have different range.

In what follows I use the finite sample FIM in order to take a proper account of the size of the sample,

which is set to T=150, as in CFM.3 I report three versions of the weighted geometric average criterion

with: (1) equal weights on all free parameters; (2) equal weights on the free structural parameters and

zero weights on the shock parameters; (3) equal weights on the six parameters emphasized in CFM,

namely λ, ιp, ξp, σl, rπ, and ry, and zero weights on all other parameters. To be comparable with

CFM, I assume that δ, λw and cg are known. This leaves 24 free parameters, 17 of which are structural

and the other 7 are shock parameters.

Table 1: Ranking of observables, baseline parameterization

geometric average D-optimality

rank 24 parameters 17 parameters 6 parameters

1 c, i, π, r c, i, π, r c, i, π, r c, i, π, r
2 y, c, w, r y, w, π, h c, i, w, r y, w, π, h
3 y, c, w, h y, c, π, h c, w, π, h c, i, w, r

33 c, i, w, π y, i, π, r y, c, i, π y, i, π, r
34 y, c, i, π y, c, i, π y, i, r, h y, i, r, h
35 y, c, i, h y, c, i, h, y, c, i, h y, c, i, h

Note: The table shows the best 3 and the worst 3 sets of observables according to the geometric average
and D-optimality criteria. The geometric average criterion is computed for 3 groups of parameters: 24
(all free) parameters; 17 (all except shock) parameters; 6 (only λ,ιp,ξp,σl,rπ ,ry) parameters.

Table 1 shows the best three and the worst three sets of variables according to each criterion. The

criteria are in full agreement regarding the most informative and the least informative sets, all selecting

(c, i, π, r) as best and (y, c, i, h) as worst. There is also a broad agreement in the rest of the ranking,

and in particular in the absence of (y, c, i) among the most informative sets. The differences between

most and least informative combinations can be seen in Figure 1, which shows the sorted values for of

the different criteria.

Table 2 presents the values of the individual CR bounds for the three most informative and the

three least informative sets of variables as selected by the geometric average criterion with weights only

on the six deep parameters. In addition, the set (y, c, i, w) is also included as it was selected by CFM

as being one of the two most informative combinations.

3The asymptotic FIM is defined as the limit of the average finite sample FIM, which in turn is the negative expected
Hessian of the log-likelihood function. With the asymptotic FIM information accumulates at a constant rate T and
therefore the ranking of observables does not depend on the sample size. With the final sample FIM information may
accumulate at different and changing rates for different sets of observables. Thus, the ranking may change with the
sample size.
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Figure 1: Sorted values of the variables selection criteria.

As can be seen from the results, choosing one combination of variables over another usually involves

a trade-off in terms of information about different parameters. Even the least informative according to

all criteria set, (y, c, i, h), is the most informative one, amongst those in the table, for two parameters,

ρga and σa. The overall best set (c, i, π, r) yields the lowest (among these seven sets) CR bounds for 14

of the 24 free parameters, including four of the six deep parameters CFM focus on. The set (y, c, i, w),

which is one of the two preferred combinations of CFM, is most informative (among the seven sets in

the table) for five parameters, including two of the six they focus on, ξp and σl. However, choosing that

combination involves large information loss with respect to the other four parameters, especially the

Taylor rule ones, which is not surprising since interest rate and inflation are naturally very informative

variables for those parameters. Notice, in panel B of the table, that the value of the loss function for

(y, c, i, w) is about twice as large as for any of the top three combinations. Hence, the only way to

pick (y, c, i, w) as best would be to assign a much larger weights on σl and ξp than on the other four

parameters.

One of the criteria used by CFM ranks the sets of variables on the basis of the sensitivity of the

likelihood to a selected group of parameters. The measures they use compare the scores of the non-

singular and convoluted singular systems, and require simulated data to compute. A simpler and

more direct measure of sensitivity to a single parameter θi is the expected curvature of log-likelihood

function, given by E
(

∂ℓT (θ)
∂θi

)2
. Note that this is just the i-th diagonal element of the FIM and does

not require data to compute. It is interesting to compare the sets of variables which maximize the

likelihood sensitivity with the ones which minimize the CR bounds. This is done in Table 3. For
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Table 2: Most and least informative sets of observables

param. (c, i, π, r) (c, i, w, r) (c, w, π, h) (y, c, i, w) (y, c, i, π) (y, i, r, h) (y, c, i, h)

ρga 1.680 0.794 0.502 0.294 0.372 0.198 0.173
α 0.045 0.040 0.079 0.051 0.076 0.069 0.069
ψ 0.080 0.097 0.229 0.126 0.179 0.145 0.170
β 0.009 0.009 0.018 0.011 0.015 0.018 0.013
φ 2.489 2.813 2.823 6.089 6.817 2.207 2.470
σc 0.123 0.228 0.260 0.224 0.506 0.358 0.281
λ 0.022 0.027 0.039 0.038 0.100 0.090 0.128
Φ 0.341 0.638 0.757 0.152 1.521 0.256 0.262
ιw 0.139 0.376 0.076 0.225 1.037 1.218 1.238
ξw 0.134 0.026 0.021 0.021 0.183 0.160 0.409
ιp 0.039 0.325 0.057 0.198 0.099 1.318 1.137
ξp 0.147 0.133 0.112 0.048 0.419 0.309 0.519
σl 0.676 0.947 0.190 0.188 2.021 1.324 0.965
rπ 0.250 1.007 0.772 2.959 1.431 1.844 2.505
r△y 0.031 0.036 0.159 0.134 0.142 0.116 0.591
ry 0.048 0.125 0.071 0.336 0.195 0.163 0.777
ρ 0.023 0.055 0.035 0.080 0.089 0.089 0.254
ρa 0.015 0.017 0.026 0.025 0.030 0.022 0.023
ρg 0.005 0.009 0.015 0.014 0.015 0.021 0.014
ρI 0.041 0.055 0.046 0.093 0.098 0.067 0.065
σa 0.399 0.091 0.153 0.218 0.395 0.049 0.046
σg 0.150 0.136 0.317 0.046 0.088 0.074 0.057
σI 0.059 0.078 0.325 0.094 0.097 0.078 0.085
σr 0.015 0.017 0.100 0.122 0.231 0.027 0.341

B. Overall, geometric average

24 parameters 0.083 0.106 0.119 0.118 0.213 0.157 0.214
17 parameters 0.113 0.160 0.137 0.153 0.310 0.270 0.373
6 parameters 0.042 0.062 0.068 0.121 0.146 0.147 0.346

C. Overall, D-optimality

24 parameters -195 -164 -147 -142 -115 -113 -109

Note: Panel A shows the values of the Cramér-Rao lower bounds for sample size T = 150. Panel B shows the
geometric averages of the bounds for three groups of parameters: 24 (all free) parameters; 17 (all except
shock) parameters; 6 (only λ,ιp,ξp,σl,rπ ,ry). Panel C shows the values of ln(det(I−1)). Lower values always
indicate more information.

eighteen parameters, including four of the six CFM focus on, the likelihood is most sensitive when

(c, i, π, r) is observed. For ten of these (c, i, π, r) is also the most informative combination. Overall,

for 13 of the 24 parameters the most sensitive and most informative sets coincide. This discrepancy

can be explained with the fact that sensitivity is only one of the factors that determines the amount of

information. The other factor has to do with how distinct the effect of each parameter on the likelihood

is from the effects of the other free parameters. To see why this might matter, consider a situation

where there are two parameters which affect very strongly the distribution of a set of variables, but the

effects are exactly identical. Even though the likelihood sensitivity is very strong, the two parameters

would be unidentifiable from that set of variables. Yet, the parameters may be identified with another

set of variables, even thought the sensitivity is much weaker. For more details on this, see Iskrev (2010).
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Table 3: Most sensitive and most informative sets of variables

param. most sensitive most informative

ρga y, c, i, h y, w, π, h
α c, i, π, r y, i, w, r
ψ c, i, π, r c, i, π, r
β c, i, π, r c, i, r, h
φ c, i, π, r c, i, r, h
σc c, i, π, r c, i, π, r
λ c, i, π, r c, i, π, r
Φ c, i, π, r y, w, π, h
ιw y, w, π, h y, c, w, π
ξw c, i, π, r y, c, w, h
ιp y, w, π, h y, w, π, h
ξp y, w, π, h y, w, π, h
σl c, i, π, r y, c, w, h
rπ c, i, π, r c, i, π, r
r△y c, i, π, r c, i, π, r
ry c, i, π, r c, i, π, r
ρ c, i, π, r c, π, r, h
ρa c, i, π, r y, w, π, h
ρg c, i, π, r c, i, π, r
ρI c, i, π, r c, i, π, r
σa y, w, π, h y, w, π, h
σg y, i, w, r y, c, w, r
σI c, i, π, r c, i, π, r
σr c, i, π, r c, i, π, r

Note: The most sensitive set of variables for θi is the one minimizing
the inverse of the i-th diagonal element of I. The most informative is
the one minimizing the i-th diagonal element of I−1.

2.3 Are the results robust to changes in the parameter values and the

number of shocks?

The results presented in the last section are conditional on the particular parameter values and the

assumptions CFM make regarding the number of shocks and the stationarity of the observables. Here

I check whether the optimal selection of observables is robust to changes in the parameter values and

the model specification.

I consider three alternatives. First, I change the parameter values keeping the rest of the

model as before. Instead of the baseline parametrization, which is similar to the posterior mean in

Smets and Wouters (2007), I use the prior mean from that paper. The prior mean is a natural choice

since the analysis is supposed to happen prior to estimation. In the other two cases the model is as

specified in Smets and Wouters (2007), i.e. featuring seven shocks and deterministic trend, with the

trending variables observed in terms of growth rates. I refer to this as the SW specification. That

model is evaluated at the means of the prior and the posterior distributions. In order for the results

to be comparable with those in the previous section, I maintain the same group of free parameters.

Therefore, I assume that the parameters of the three additional shocks as well as the trend parameter

are known.

Table 4 shows a summary of the results using the same criteria as before. Clearly, while there is

7



considerable consistency in the ranking across different criteria, the optimal combination of variables

is not invariant to the parametrization. Also, the two sets, (y, c, i, h) and (y, c, i, w), recommended by

CFM, are consistently ranked among the least informative, especially when the focus is on the six deep

parameters.

The optimal combinations of variables for each parameter are shown in Table 5. Panel A reports

the results for the CFM specification of the model evaluated at the prior and posterior mean values.

In panel B are shown the results for the SW specification. In the case of the CFM model, the optimal

combinations of variables is the same for only four parameters. For the SW specification the number of

coincidences is 11. There is only one parameter for which the most informative combination is the same

across both parameterizations and model specifications. In very few cases the optimal combination of

variables includes y, c, and i.

Table 4: Ranking of observables, alternative parameterizations

geometric average D-optimality

rank 24 parameters 17 parameters 6 parameters

A. CFM model, prior mean

1 c, w, r, h c, w, r, h c, w, r, h c, i, r, h
2 c, i, r, h c, i, r, h c, π, r, h c, w, r, h
3 y, w, π, r y, c, w, π c, i, r, h y, c, i, w

33 y, c, i, r y, i, π, r y, i, w, h y, c, i, r
34 y, c, i, h y, c, i, r c, i, w, h y, i, r, h
35 y, i, π, r y, c, i, h y, c, i, h y, c, i, h

B. SW model, prior mean

1 y, i, h, r y, i, h, r c, w, h, π y, i, h, r
2 y, c, h, r y, c, h, r c, h, π, r y, c, h, r
3 y, i, h, π i, h, π, r y, c, h, π y, c, i, r

33 y, c, i, w y, c, i, h y, i, w, h c, w, h, π
34 c, i, w, h y, c, i, w y, c, i, w c, i, w, π
35 c, i, w, π c, i, w, π y, c, i, h c, w, π, r

C. SW model, posterior mean

1 y, i, h, r y, i, π, r c, h, π, r y, i, h, r
2 y, i, π, r i, w, h, r c, i, π, r y, h, π, r
3 y, c, h, r y, i, h, r w, h, π, r y, c, h, r

33 y, w, h, π c, i, w, π y, c, i, r y, c, i, w
34 y, c, i, h y, c, i, π y, c, i, w y, w, h, π
35 c, i, w, π y, c, i, h y, c, i, h y, c, i, h

Note: see note to Table 1.

2.4 The role of interest rate and inflation

One of the main conclusions of CFM is that neither interest rate nor inflation data should be selected,

if one has to choose only four of the seven variables. This seems surprising given that four of the six

parameters CFM focus on are the price stickiness and price indexation parameters and the inflation

and output coefficients in the monetary policy rule. Intuitively, one may expect inflation and interest

rate to be very important for the identification of these parameters.
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Table 5: Optimal sets, alternative parameterizations

CFM model SW model

param. prior mean posterior mean prior mean posterior mean

ρga y, i, w, h y, w, π, h y, c, i, h y, c, i, h
α y, c, i, w y, i, w, r c, i, h, r y, c, i, r
ψ c, i, r, h c, i, π, r y, i, w, h y, c, i, w
β c, i, r, h c, i, r, h c, h, π, r c, h, π, r
φ c, i, π, h c, i, r, h c, i, h, r c, i, h, r
σc c, i, r, h c, i, π, r c, i, h, r c, i, h, r
λ c, i, r, h c, i, π, r c, i, h, r c, i, h, r
Φ y, w, π, h y, w, π, h c, i, w, h y, i, h, r
ιw c, i, w, π y, c, w, π c, w, h, π c, w, h, π
ξw y, w, π, r y, c, w, h c, w, h, π c, w, h, r
ιp c, w, π, h y, w, π, h y, w, h, π w, h, π, r
ξp y, w, π, h y, w, π, h y, w, h, π y, w, h, π
σl c, w, r, h y, c, w, h c, w, h, π c, w, h, r
rπ c, i, r, h c, i, π, r y, h, π, r c, i, π, r
r△y c, w, r, h c, i, π, r y, i, π, r c, i, h, r
ry c, i, r, h c, i, π, r c, h, π, r c, i, π, r
ρ c, π, r, h c, π, r, h y, h, π, r c, h, π, r
ρa c, i, r, h y, w, π, h y, i, w, h y, i, h, r
ρg y, c, i, w c, i, π, r y, c, i, h y, c, h, r
ρI c, i, r, h c, i, π, r c, i, h, r c, i, h, r
σa y, i, w, h y, w, π, h y, i, w, h y, i, w, h
σg y, w, π, r y, c, w, r y, c, i, h y, c, i, h
σI c, i, r, h c, i, π, r c, i, h, r c, i, w, r
σr c, π, r, h c, i, π, r c, h, π, r c, h, π, r

Note: The table shows the most informative sets of variables for each parameter.
The posterior mean parametrization of the CFM model is identical to the baseline
case analyzed in section 2.2

One way to assess the importance of a variable is to measure the loss of information when the

variable is excluded relative to when it is included as an observable. Table 6 shows, for the six deep

parameters CFM focus on, the ratios of the Cramér-Rao lower bounds (CRLB) with one variable

excluded relative to bounds with all seven variables observed. The largest number in each row shows

which variable is most informative for the parameter in that row. According to that measure, inflation

is the most informative variable for three parameters - ιp, rπ and ry. Interest rate and consumption are

the most informative variables for λ, while consumption and hours are the most informative variables

for σl. Lastly, wages is the most informative variable for ξp. Overall, the large numbers in the first two

column of the table suggest that there is a significant loss of information from excluding π and r.
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Table 6: Loss of information, posterior mean of SW model

excluded variable

r π h w i c y

λ 1.8 1.1 1.4 1.2 1.4 1.8 1.2
ιp 1.0 3.7 1.1 3.0 1.0 1.0 1.1
ξp 1.1 2.1 2.3 2.5 1.3 1.2 1.3
σl 1.4 1.2 1.7 1.2 1.2 1.7 1.1
rπ 1.8 2.2 1.2 1.1 1.1 1.2 1.0
ry 1.8 2.1 1.2 1.1 1.1 1.1 1.0

Note: The numbers shown are the CRLBs with one excluded variable
relative to the CRLBs with all 7 variables.

3 Concluding remarks

The results can be summarized as follows: (1) The rank condition for identification is not informative

about the optimal choice of observables for the model analyzed. In general, it could be useful if only

one or a very few of the many possible sets of variables satisfy the identification condition. This seems

to rarely be the case in practice. (2) At the baseline parametrization of the model the most informative

set of variables includes consumption, investment, interest rate, and inflation. (3) The most informative

set of variables is not invariant to the parametrization of the model or the number of shocks.

All of these findings call into questions the results in CFM. Perhaps the most important one is (3),

which implies that to select the best set of variables to use in estimation it is not sufficient to determine

what they are at a single point in the parameter space. A reasonable solution in a Bayesian context

would be to base the selection of variables on the expected value of the preferred criterion, with the

expectation taken over the prior distribution of the parameters.
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