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Abstract

We develop a procedure that efficiently computes likelihood function in non-
linear dynamic stochastic general equilibrium (DSGE) models. The procedure em-
ploys linearization to the measurement equation and delivers competitive results as
the fully-adapted particle filter. The resulting likelihood approximation has much
lower Monte Carlo variance than currently available particle filters, which greatly
enhances the likelihood-based inference of DSGE models. We illustrate our pro-
cedure in applications to Bayesian estimation of a new Keynesian macroeconomic
model.
Keywords: DSGE model, auxiliary particle filter, Bayesian estimation
JEL classification: C11, C15, C32, C63

1 Introduction

The particle filter (PF) has become an important tool for likelihood-based inference in
dynamic stochastic general equilibrium (DSGE) models with non-linear policy functions
and non-normal exogenous shocks. PF approximates the intractable likelihood function
in the spirit of sequential importance sampling and resampling. The approximated like-
lihood function is then plugged into the Metropolis-Hastings (MH) algorithm to obtain
draws from posterior distribution, or into a derivative-free optimization algorithm to get
a simulated maximum likelihood estimator (Fernández-Villaverde and Rubio-Ramı́rez,
2007).

It is well-known that PF can be quite inefficient when the variance of measurement
error is small or in the presence of outliers in data. This explains why a huge number of
particles (usually between 104 and 105) are required to achieve sensible estimation results
when taking DSGE models to real data (An and Schorfheide, 2007).

In this article, we propose an efficient auxiliary particle filter (APF) algorithm that
reduces variance of likelihood approximation significantly. This algorithm adds a nonlinear
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filtering step in each period of particle filter, leading to as accurate an approximation as
the fully-adapted particle filter. This algorithm is robust to data generating mechanisms
with different parameter values. It leads to a fast mixing rate in MH algorithm and
provides accurate posterior estimators.

2 Particle Filter for Likelihood Approximation

Most dynamic equilibrium models have the following state space representation:

xt = hθ(xt−1) +Rεt,

yt = gθ(xt) + et.
(1)

Here xt is nx × 1 latent pre-determined state variable with x1 ∼ µθ(·), yt is ny × 1
imperfectly observed economic data, εt ∼ N(0,Σε) is nε × 1 exogenous shock to the
economic system, et ∼ N(0,Σe) is ny×1 measurement error, R is a nx×nε matrix, θ ∈ Θ
is vector of structural parameters and hθ : Rnx → Rnx and gθ : Rnx → Rny are non-linear
functions. In many applications, these policy functions (1) are solved by perturbation
method(Schmitt-Grohe and Uribe, 2004). For example, the second-order policy functions
have the following form (σ is parameter scales the variance of shocks): 1

hθ(x) =
1

2
hσσ(θ) + hx(θ)x+

1

2
(Inx ⊗ x)Thxx(θ)x

gθ(x) =
1

2
gσσ(θ) + gx(θ)x+

1

2
(Inz ⊗ x)Tgxx(θ)x.

The likelihood function L(θ) ≡ pθ(y1:T ) of the model is analytically intractable due to
non-linear terms in policy functions. Note that pθ(y1:T ) can be decomposed as

pθ(y1:T ) = pθ(y1)
T∏
t=2

pθ(yt|y1:t−1) (2)

and each term in (2) can be represented as

pθ(yt|y1:t−1) =

∫
pθ(yt|xt)pθ(xt|xt−1)pθ(xt−1|y1:t−1)dxt−1:t. (3)

Particle filter approximates pθ(y1:T ) recursively: At period t, PF replaces pθ(xt−1|y1:t−1)
in (3) with the empirical filtering density obtained at period t− 1

p̃Nθ (xt−1|y1:t−1) ,
N∑
j=1

w̄
(j)
t−1δ(xt−1 − x(j)t−1)

and then approximated (3) by importance sampling. A generic auxiliary particle filter
follows

1The function gθ(·) in this article is not the same as that defined in Schmitt-Grohe and Uribe (2004).
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1. At t = 1, for i = 1, . . . , N , draw x
(i)
1 ∼ µθ(x1), let w

(i)
1 = pθ(y1|x(i)1 ) and w̄

(i)
1 =

w
(i)
1 /
(∑N

j=1w
(j)
1

)
. Approximate pθ(y1) by p̂Nθ (y1) , N−1

∑N
j=1w

(j)
1 .

2. For t = 2, . . . , T ,

(a) For i = 1, . . . , N , let u
(i)
t = w̄

(i)
t−1ν

(i)
t , ū

(i)
t = u

(i)
t /
(∑N

j=1 u
(j)
t

)
and draw ait from

{1, . . . , N} with probabilities {ū(1)t , . . . , ū
(N)
t } and x

(i)
t ∼ qθ(·|x

(ait)
t−1 , yt).

(b) For i = 1, . . . , N , evaluate the importance weight

w
(i)
t =

pθ(yt|x(i)t )pθ(x
(i)
t |x

(ait)
t−1)

qθ(x
(i)
t |x

(ait)
t−1 , yt)ν

(ait)
t

, w̄
(i)
t =

w
(i)
t∑N

j=1w
(j)
t

.

(c) Approximate pθ(yt|y1:t−1) by p̂Nθ (yt|y1:t−1) , (N−1
∑N

j=1w
(j)
t )(

∑N
j=1 u

(j)
t ).

3. Approximate the likelihood by p̂Nθ (y1:T ) , p̂Nθ (y1)
∏T

t=2 p̂
N
θ (yt|y1:t−1).

In the above PF algorithm, νt = νθ(xt−1, yt) is the weight-adjustment multiplier (Pitt

and Shephard, 1999) and ait is the index for the ancestor of x
(i)
t at period t − 1. Under

mild conditions, E[p̂Nθ (y1:T )] = pθ(y1:T ) for any N ≥ 1 and θ ∈ Θ (Pitt et al., 2012).
The unbiasedness property enables us to simulate from the true posterior distribution
by MH algorithm and achieve exact Bayesian inference for θ even though the true like-
lihood function is unknown (Flury and Shephard, 2011). Since the mixing rate of the
resulting particle MH chain highly depends on the Monte Carlo variance of p̂Nθ (y1:T ),
large V[p̂Nθ (y1:T )] will result in high autocorrelation in the generated posterior samples
and hence inaccurate posterior estimates. It is possible that the particle MH scheme is
no longer geometrically ergodic in this case, retaining the chain in the same value for a
long period due to many rejections of the proposals.

The variance of p̂Nθ (y1:T ) is closely related to the variance of importance weights.
According to Doucet et al. (2000), the optimal proposal distribution q∗θ(xt, |xt−1, yt) ,
pθ(xt, |xt−1, yt) minimizes the variance of importance weights given xt−1. However, even

when q∗θ is employed, important weights w
(i)
t = pθ(yt|x

(ait)
t−1) may still be tremendously

unevenly distributed if yt is an outlier, resulting in large variance of wt. This is of particular
concern if the measurement error is small because pθ(yt|xt) is extremely sensitive to xt in
this case.

To alleviate this problem, auxiliary particle filter (APF) assigns more weights in the
resampling step to particles with higher conditional likelihood pθ(yt|xt−1) such that those
”promising” particles have higher probabilities to survive(Pitt and Shephard, 1999). This
is done by multiplying the standard importance weight wt by an multiplier νt which con-
veys information in observation yt.

2 When ν∗θ (xt−1, yt) , pθ(yt|xt−1) and q∗θ are employed,
the weights reduce to all being one and the procedure is called ”fully-adapted” particle
filter (FAPF). The FAPF is generally the optimal filter and most efficient in estimating
the likelihood pθ(y1:T ) (Pitt et al., 2012).

2Note that νt = 1 in standard particle filter.
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In general non-linear DSGE models, neither q∗θ nor ν∗θ is analytically available. Amisano
and Tristani (2010) suggest a normal approximation to q∗θ by linearizing gθ(·) around fore-
casted mean of latent state E[xt|y1:t−1]. As we will see, this approximation is inaccurate as
it ignores the rich information in yt and neglects the linearization error. Andreasen (2011)
proposes to draw xt ∼ qθ(xt) independently of xt−1, where qθ(xt) is an approximation to
pθ(xt|y1:t). This proposal distribution loses efficiency by ignoring the dependence of latent
state process. Hall et al. (2014) proposes an APF for state-space models with intractable
transition density. This APF is computationally demanding since numerical optimization
steps are implemented in each period of filtering. DeJong et al. (2013) develops an it-
erated least squares procedure to obtain a global approximation to the “unconditional”
optimal proposal distribution pθ(xt, xt−1|y1:t). This approach introduces bias in likelihood
approximation and hence not desirable in Bayesian computation.

As Johansen and Doucet (2008) points out, a preferable approach for APF is to select
an approximation p̂θ(yt, xt|xt−1) to the distribution pθ(yt, xt|xt−1) such that the impor-
tance weights have an upper bound. When the approximation is accurate, the resulted
APF will achieve similar performance as with FAPF. In DSGE models, the moderate
non-linearity in measurement equation enables us to linearize gθ(·) to obtain a good ap-
proximation to FAPF. The small variance of measurement error leads to a highly spiky
distribution pθ(yt|xt) and hence the mode of pθ(yt|xt) may be far away from E[xt|y1:t−1].
Therefore a local approximation to pθ(yt|xt) around E[xt|y1:t−1] would be rather inaccurate
resulting in large errors in regions where pθ(yt|xt) is high. To reduce the local approxima-
tion error, we suggest linearizing gθ(·) around E(xt|y1:t), which though is unknown before
applying particle filter yet can be easily computed by running one extra step of non-linear
Kalman filter. We propose the following procedure at period t (t = 1, . . . , T ) of APF:

1. Approximate E[xt−1|y1:t−1] and V[xt−1|y1:t−1] with particles {x(i)t−1, w
(i)
t−1}Ni=1. Run

one step non-linear Kalman filter to get E[xt|y1:t].

2. Linearize gθ(x) around E[xt|y1:t] to get normal approximations to pθ(yt|xt−1) and
pθ(xt|xt−1, yt).

3. Implement APF with νθ(xt−1, yt) = p̂θ(yt|xt−1) and qθ(xt|xt−1, yt) = p̂θ(xt|xt−1, yt).

3 Numerical Experiment

This section illustrates the performance of the proposed APF by estimating the new Key-
nesian model built in An and Schorfheide (2007). The model is solved up to second-order
accuracy around the non-stochastic steady state (Schmitt-Grohe and Uribe, 2004). The
prior distributions and calibrated parameter values are listed in Table 1 (the parameter 1/g
is fixed to be 0.85 in the simulation). The competing algorithms to our APF include boot-
strap filter (BF) in Fernández-Villaverde and Rubio-Ramı́rez (2007), conditional particle
filter (CPF) in Amisano and Tristani (2010) and central difference particle filter (CDPF)
in Andreasen (2011). The proposal distribution in CDPF is multivariate student-t with
degree of freedom 15. In APF, the preliminary filtered mean E[xt|y1:t] is computed by
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Table 1: Priors Distribution and Calibrated Values
Name Distribution Mean S.D. Value
τ Gamma 3.0 0.50 2.00
ν Beta 0.1 0.05 0.10
κ Gamma 0.3 0.01 0.33
ψ1 Gamma 1.5 0.25 1.50
ψ2 Gamma 0.5 0.25 0.13
r(A) Gamma 0.8 0.50 1.00
π(A) Gamma 4.0 0.50 3.20
γ(Q) Gaussian 0.5 0.20 0.55
ρR Beta 0.8 0.15 0.75
ρπ Beta 0.8 0.15 0.95
ρu Beta 0.8 0.15 0.90
100σR Inv-Gamma 0.4 4.00 0.20
100σπ Inv-Gamma 0.4 4.00 0.60
100σu Inv-Gamma 0.4 4.00 0.30

central difference Kalman filter (CDKF), which provides accurate approximation to the
filtered moments in an computationally efficient way (Andreasen, 2013).

We first compare the Monte Carlo variance of log-likelihood approximation for different
PFs given the calibrated parameters. We generate 100 observations from the model and
set the variance of measurement errors to be r times the sample variance of data. Each
PF was run 100 times to estimate V[log p̂Nθ (y1:T |θ)] given N and r and this procedure is
repeatedly implemented 10 times. Table 2 reports the average V[log p̂Nθ (y1:T |θ)] across 10
implementations for each method. Besides model with normally distributed shocks, we
also consider the case where structural shocks follow student-t distribution to generate
outliers in the data set.

Table 2 shows that the APF clearly dominates other PFs in all cases. Even when
r = 0.01, APF obtains a remarkably low variance of log-likelihood approximation with
just 500 particles. BF performs the worst and needs more than 40000 particles to achieve
the similar Monte Carlo variance as APF with N = 500 when r = 0.1. CPF performs
better than CDPF if the measurement error is not extremely small. When r = 0.01, the
performance of CPF improves rather slowly as N increases due to omitting the highly
informative yt in this case. When outriders are introduced in the data set, performances
of all PFs deteriorate compared to the normal distribution case. However, CDPF and
APF are more robust to outliers due to heavy-tailed proposal distribution and auxiliary
variable strategy respectively.

Finally, we illustrate the benefit of the proposed APF for Bayesian parameter esti-
mation. The observations in measurement equation include GDP growth, inflation rate
and federal fund rate in the U.S. from 1984Q1 to 2007Q4. Posterior draws are generated
by random-walk Metropolis algorithm, and the variance-covariance matrix in propos-
al distribution is c times the inverse of negative Hessian matrix evaluated at posterior
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Table 2: Variance of Log-likelihood Approximation
Normal, r = 0.1 Normal, r = 0.05

N(×103) BF CPF CDPF APF BF CPF CDPF APF
0.5 7.944 0.185 1.581 0.085 26.045 0.368 2.319 0.115
1 3.446 0.090 0.820 0.040 12.138 0.192 1.247 0.056
2 1.480 0.044 0.419 0.018 5.661 0.126 0.621 0.028
4 0.812 0.021 0.218 0.010 3.168 0.078 0.300 0.015
10 0.335 0.011 0.092 0.004 1.158 0.031 0.136 0.006
20 0.152 0.005 0.042 0.002 0.741 0.018 0.064 0.003
40 0.087 0.003 0.021 0.001 0.387 0.015 0.034 0.001

Normal, r = 0.01 Student-t, r = 0.1
N(×103) BF CPF CDPF APF BF CPF CDPF APF

0.5 560.021 4.931 68.418 0.210 17.464 0.609 2.501 0.280
1 296.200 3.751 21.588 0.130 10.528 0.444 1.198 0.133
2 125.407 2.815 3.127 0.064 6.468 0.265 0.764 0.060
4 68.222 2.410 1.544 0.035 3.287 0.171 0.394 0.028
10 28.985 2.036 0.524 0.018 1.717 0.194 0.217 0.014
20 15.995 1.203 0.295 0.009 0.778 0.099 0.129 0.006
40 10.830 1.275 0.144 0.004 0.582 0.086 0.074 0.003

mode3. The optimal scaling of random-walk Metropolis is c∗ = 2.38/
√
dim(θ) ≈ 0.636

and the resulting acceptance rate will be around 0.234. For each generated Metropolis
chain, the scale parameter c is tuned in order to make the acceptance rate between 0.23
and 0.28. Table 3 reports some convergence diagnostic statistics of Markov chain, cal-
culated from M = 20000 posterior draws with the first 2000 as burn-in. Here ASJD =
(M−1)−1

∑M
m=2 ‖θ(m)−θ(m−1)‖2 measures the average squared jump distance of the gener-

ated chain in the parameter space. IATj = 1 + 2
∑1000

l=1 ρ̂j(l) measures the autocorrelation
of posterior samples for j-th parameter.

In Table 3, APF dominates CPF in convergence of the resulting Markov chain. For
CPF, when N is not large enough, the maximum of IATs is high because the rather
noisy estimate of likelihood makes it hard for MH algorithm to explore the parameter
space thoroughly. Thus it will lead to large Monte Carlo variance in estimating posterior
means. In particular, it needs 10000 particles to achieve competitive performance. When
N = 10000, the approximation to likelihood function is rather accurate and the resulting
particle MH algorithm is very close to the idealized algorithm. In fact, 1000 particles is
adequate for APF, since the gain by adding number of particles is only marginal. From the
comparison, it is clear that APF greatly reduces the computational burden in posterior
computation.

3The mode is computed by CDKF and Sim’s routine.
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Table 3: Convergence of Particle MH Algorithm
Filter N(×103) c Acceptance Rate ASJD Median of IATs Max. of IATs
CPF 0.5 0.50 0.24 0.030 120.6 406.4

1 0.52 0.26 0.035 109.2 426.6
5 0.55 0.25 0.036 104.7 339.9
10 0.60 0.23 0.040 91.0 194.7

APF 0.5 0.57 0.27 0.042 71.0 247.7
1 0.58 0.27 0.042 81.7 142.5
5 0.60 0.27 0.045 59.8 116.6
10 0.60 0.27 0.048 61.2 158.3

Note: After posterior sampling, we calculate IAT for each parameter and “Median of
IATs” is the median of 14 IATs while “Max. of IATs” is the maximum.

4 Conclusion

This articles proposes an efficient particle filter algorithm for likelihood evaluation in non-
linear dynamic equilibrium models. The proposed algorithm delivers competitive results
as the fully-adapted particle filter, which greatly enhances the likelihood-based inference
of DSGE models. We illustrate our procedure in applications to Bayesian estimation of
Keynesian macroeconomic model.
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