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Abstract

We study optimal monetary policy in response to uncertainty shocks in standard New Keynesian

models under Calvo and Rotemberg pricing schemes. We find that optimal monetary policy achieves

joint stabilization of inflation and the output gap in both pricing schemes. We show that a simple Taylor

rule that puts high weight on inflation stability approximates optimal monetary policy well. This rule

mutes firms’ precautionary pricing incentive, the key channel that makes responses under Calvo and

Rotemberg pricing schemes differ under the empirically calibrated Taylor rule.
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1 Introduction

Time-varying uncertainty has recently received considerable attention from policymakers and academics,

spurring a burgeoning literature on identifying transmission mechanisms of uncertainty shocks. Different

types of nominal rigidities have been shown to affect uncertainty propagation differently. Yet, little is known

on whether optimal monetary policy varies depending on the way nominal rigidities are modeled. There

are two popular approaches to modeling price rigidities. The first is Calvo (1983) pricing, under which

firms face a constant probability of not being allowed to reoptimize their price every period. The second is

Rotemberg (1982) pricing, under which firms can always adjust their price upon payment of a quadratic price

adjustment cost. It is well-known that the two approaches are observationally equivalent up to a first-order

approximation. However, in response to uncertainty shocks, which require at least a third-order perturbation

to show up in a policy function, they generate different dynamics under the empirical Taylor rule – see Oh

(2020).

This paper explores how optimal monetary policy responds to uncertainty shocks and whether its

response varies depending on the way price rigidities are modeled. In particular, we derive the optimal

monetary policy in response to uncertainty shocks under Calvo and Rotemberg pricing frictions. We show

that, when monetary policy responds optimally, allocations under the two pricing schemes are the same (and

efficient). Clarifying what generates different dynamics under the empirical Taylor rule helps us understand

why optimal monetary policy is able to achieve the same allocations. When monetary policy follows the

empirical Taylor rule, under Rotemberg pricing, uncertainty shocks appear as demand shocks. A rise in

uncertainty triggers households’ precautionary savings, which causes a fall in both inflation and the output

gap. On the contrary, under Calvo pricing, uncertainty shocks appear as cost-push shocks. A rise in

uncertainty triggers firms’ precautionary pricing motive along with households’ precautionary savings. The

precautionary pricing incentive stems from firms’ exposure to the risk of not being able to set their desired

price level in the future. Price-resetting firms raise prices today to hedge against an uncertain future profit

stream. This triggers a rise in inflation and a sharper fall in the output gap, as the resulting rise in inflation

further compresses aggregate demand. Therefore, the main driver of the different dynamics under the

two pricing schemes is the precautionary pricing behavior of firms, which is only present with Calvo-type

price rigidities. We show that, when monetary policy is set optimally, not only the households’ precautionary

motive but also the firms’ precautionary pricing motive are eliminated. This results in stabilized inflation and

the output gap under the optimal monetary policy, regardless of the type of price friction. We further show

that, under both pricing schemes, a simple rule that puts extremely high weight on inflation approximates

the optimal monetary policy well.
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Our paper is related to two main streams of the literature. The first focuses on the transmission of

uncertainty shocks to the macroeconomy and includes works such as Born and Pfeifer (2014), Fernández-

Villaverde et al. (2015), Leduc and Liu (2016), Basu and Bundick (2017), and Oh (2020). While these papers

show that the form of price rigidity adopted is not innocuous under the empirical Taylor rule, we show that

this is not the case under the optimal monetary policy. The second stream of the literature our paper is related

to is comparing positive and normative results under the Calvo and Rotemberg pricing assumptions. As for

positive studies, Miao and Ngo (2019) and Ngo (2019) show that the two pricing schemes generate different

dynamics at the zero lower bound. Ascari and Rossi (2012) argue that the Calvo and Rotemberg models

have very different predictions when the models are approximated at a positive steady state inflation rate.

As for normative studies, Nisticó (2007) and Lombardo and Vestin (2008) compare the welfare implications

of the Calvo and Rotemberg models. Leith and Liu (2016) compares the inflation bias. All these papers

have an environment in which monetary policy is suboptimal. In contrast, our work compares the dynamics

in response to uncertainty shocks when monetary policy is optimal.

The rest of the paper is structured as follows. Section 2 describes the optimality conditions of a textbook

New Keynesian model under Calvo and Rotemberg pricing schemes. Section 3 discusses calibration and

responses under the optimal monetary policy and a simple Taylor rule. Section 4 concludes.

2 Textbook New Keynesian Models

We describe the equilibrium conditions of a basic New Keynesian model under Calvo (1983) and Rotemberg

(1982) price rigidities. The model features a utility-maximizing household, intermediate good firms that

compete monopolistically and face price frictions, and exogenous productivity subject to second moment

shocks.

The optimal labor supply and consumption of a representative household are characterized by:

χNt
η = Ct

−γwt, (1)

Ct
−γ = βEtCt+1

−γ Rt
πt+1

, (2)

where Ct indicates consumption, Nt labor supply, and wt the real wage. γ is the risk aversion parameter,

χ is the labor disutility parameter, and η is the inverse of the Frisch labor supply elasticity. πt is the gross

inflation rate, while Rt is the nominal interest rate.

Differentiated goods are produced by a continuum of intermediate good firms, indexed by i ∈ [0, 1],
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according to:

Yt(i) = AtNt(i). (3)

At is the exogenous productivity following:

logAt = ρA logAt−1 + σAt ε
A
t , 0 ≤ ρA < 1, εAt ∼ N(0, 1). (4)

σAt is the time-varying volatility of productivity and follows:

log σAt = (1− ρσA) log σA + ρσA log σAt−1 + σσ
A

εσ
A

t , 0 ≤ ρσA < 1, εσ
A

t ∼ N(0, 1), (5)

where σA indicates the steady state value of σAt .

Intermediate goods are aggregated into final goods using a CES technology with elasticity of substitution

ε > 1. The average real marginal cost is given by:

mct =
wt
At
. (6)

The efficient output Y ft , the level of output that would prevail under flexible prices and perfect competition,

is:

χ

(
Y ft
At

)η
= Y ft

−γ ε− 1

ε

At
(1− τ)

, (7)

where τ = 1
ε indicates the rate at which firms’ production is subsidized and ensures the efficient steady state.

The output gap is defined by:

Ỹt = log

(
Yt

Y ft

)
. (8)

2.1 Calvo Pricing

Under Calvo pricing, only a fraction 1 − θ of intermediate good firms, are allowed to reset their price in a

given period. Denoting the optimal reset price by P ?t , the optimal relative price, p?t =
P?

t

Pt
, solves:

p?t =
ε (1− τ)

ε− 1

p1,t
p2,t

, (9)

p1,t = Ct
−γmctYt + θβEtπt+1

εp1,t+1, (10)

p2,t = Ct
−γYt + θβEtπt+1

ε−1p2,t+1, (11)
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where Pt indicates the aggregate price level. Inflation evolves according to:

θπt
ε−1 = 1− (1− θ) p?t

1−ε. (12)

The aggregate production function and resource constraint are given by:

∆tYt = AtNt, (13)

Yt = Ct, (14)

where ∆t is a measure of price dispersion, which evolves according to:

∆t = (1− θ) p?t
−ε + θπt

ε∆t−1. (15)

2.2 Rotemberg Pricing

Under Rotemberg pricing, firms can reset their price every period upon payment of a quadratic price ad-

justment cost, controlled by the parameter ψ ≥ 0. In equilibrium, all intermediate good firms are symmetric

and charge the same price. The inflation rate, πt, is determined by the firms’ optimal pricing condition as

follows:

ψ (πt − 1)πt = ψβEt

(
Ct+1

Ct

)−γ
(πt+1 − 1)πt+1

Yt+1

Yt
+ 1− ε+ ε (1− τ)mct. (16)

The aggregate production function and resource constraint are given by:

Yt = AtNt, (17)

Yt = Ct +
ψ

2
(πt − 1)

2
Yt. (18)

2.3 Ramsey-Optimal Monetary Policy

Optimal monetary policy is given by the solution to the Ramsey planner’s problem. This solution is a

sequence of the nominal interest rate that maximizes the discounted sum of the representative agent’s utility

given the equilibrium conditions of the competitive economy. The Ramsey-optimal equilibrium conditions

under the Calvo and Rotemberg pricing assumptions are shown in Appendix A and B.
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Table 1: Parameter Values

Parameter Description Value
β Discount factor 0.99
γ Risk aversion 2.00
η Inverse labor supply elasticity 1.00
χ Labor disutility parameter N = 1

3
ε Elasticity of substitution between goods 11.00
θ Calvo price stickiness 0.75

ψ Rotemberg price stickiness θ(ε−1)
(1−θ)(1−θβ)

ρA Technology shock persistence 0.95
σA Steady-state volatility of technology shock 0.01
ρσA Uncertainty shock persistence 0.76

σσ
A

Volatility of uncertainty shock 0.392

3 Results

3.1 Calibration and Solution Method

The models are calibrated to a quarterly frequency. Table 1 provides a summary of the key parameters.

The discount factor β is set to 0.99. The risk aversion parameter γ is 2. The inverse of labor supply

elasticity η is set to 1. The labor disutility parameter χ is calibrated to match a steady state value of

hours worked of 1/3. The elasticity of substitution between differentiated intermediate goods ε is fixed to

11, implying a steady-state markup of 10%. We parametrize θ = 0.75 to match an average price duration

of four quarters. The Rotemberg price adjustment cost ψ is chosen so that the slope of the Phillips curve

under the Rotemberg and Calvo assumptions is equivalent upon first-order approximation. We follow Leduc

and Liu (2016) to parametrize the shock processes. For the productivity shock, we set σZ = 0.01 and

ρZ = 0.95. For the uncertainty shock, we set σσ
Z

= 0.392 and ρσZ = 0.76. We solve the models using a

third-order approximation (Adjemian et al., 2011 and Fernández-Villaverde et al., 2011) with the pruning

scheme (Andreasen et al., 2018).

3.2 Optimal Monetary Policy vs. Simple Taylor Rule

We compare the model predictions under the Ramsey-optimal monetary policy to those under a simple

Taylor rule that takes a form of:

logRt − logR = φπ log πt, (19)

where φπ = 1.5 in line with the empirical literature.

Figure 1 shows the impulse responses to a one standard deviation increase in uncertainty, when monetary
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Figure 1: Impulse Responses to Uncertainty Shocks: Empirical Taylor Rule

Note: Impulse responses are in percent deviation from their stochastic steady state.

policy follows Equation (19). An increase in uncertainty induces risk-averse households to cut consumption

and engage in precautionary saving. With Rotemberg pricing, the fall in consumption leads to a drop
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Figure 2: Impulse Responses to Uncertainty Shocks: Ramsey-Optimal Monetary Policy

Note: Impulse responses are in percent deviation from their stochastic steady state.

in output and inflation. The joint decline in prices and quantities implies that uncertainty shocks act as

negative demand shocks. As analyzed by Oh (2020) and Oh and Rogantini Picco (2020), with Calvo pricing,
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Figure 3: Impulse Responses to Uncertainty Shocks under Different Taylor Rules (Calvo)

Note: Impulse responses are in percent deviation from their stochastic steady state.

there is an additional propagation, which works through the precautionary pricing behavior of firms. When

uncertainty increases, firms that are allowed to reset their price raise the price to self-insure against the risk
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Figure 4: Impulse Responses to Uncertainty Shocks under Different Taylor Rules (Rotemberg)

Note: Impulse responses are in percent deviation from their stochastic steady state.

of being stuck with low prices in the future. Since the increase in prices induced by the precautionary pricing

behavior of firms is stronger than the drop in prices induced by the precautionary saving behavior of risk-
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averse households, inflation increases after a positive uncertainty shock. Hence, with Calvo-type rigidities,

uncertainty shocks act as cost-push shocks: inflation rises, and the output gap drops. As monetary policy

follows Equation (19), the nominal interest rate falls in the model with Rotemberg-type rigidities, while it

rises in the model with Calvo-type rigidities.

Figure 2 displays the impulse responses to an increase in uncertainty under the optimal monetary policy.

In this case, inflation and output gaps are fully stabilized in both Calvo and Rotemberg pricing models. This

result is surprising, especially for the Calvo model. In fact, as shown in Figure 1, with Calvo-type rigidities,

an increase in uncertainty acts as a cost-push shock when monetary policy follows a Taylor rule. Cost-push

shocks lead to a standard output-inflation trade-off, making it difficult for the optimal monetary policy to

stabilize the output gap and inflation at the same time. Yet, unlike cost-push shocks, uncertainty shocks do

not entail an output-inflation trade-off.

To intuitively understand why the optimal monetary policy achieves joint output and inflation stabi-

lization, it is useful to compare predictions under Taylor rules with different inflation coefficients. Figure 3

and Figure 4 compare responses under Taylor rules with different inflation coefficients (φπ = 1.5; φπ = 5;

φπ = 100). When the coefficient of inflation is extremely high, the effect of uncertainty is neutralized in

both Calvo and Rotemberg models. In fact, in both Calvo and Rotemberg, a Taylor rule that responds very

aggressively to inflation (φπ = 100) can generate allocations that are close to the ones under the optimal

monetary policy. The higher the value of φπ is, the bigger the drop in the real interest rate is realized

upon a fall in inflation. A decrease in the real interest rate on savings weakens the precautionary saving

motive and works to stabilize aggregate demand. In Rotemberg, stable aggregate demand implies a stable

nominal marginal cost. As a result, firms have no incentive to change prices, and hence inflation is stabilized.

In Calvo, stable aggregate demand eliminates uncertainty over future nominal costs. Consequently, firms

have no concerns over having their prices fixed at the level that leads to undesired markup. Therefore, the

precautionary pricing incentive in Calvo is no longer operative when the central bank has a strong desire to

stabilize inflation.

4 Conclusion

We have shown that uncertainty shocks propagate differently under Calvo and Rotemberg pricing assump-

tions when monetary policy is set according to the empirical Taylor rule: they behave like cost-push shocks

under Calvo pricing and negative demand shocks under Rotemberg pricing. However, the optimal monetary

policy achieves joint stabilization of inflation and the output gap under both pricing assumptions. This

is because the optimal monetary policy eliminates not only the households’ precautionary savings motive
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but also the firms’ precautionary pricing incentive, which is the key channel that makes prediction of Calvo

price-setting different from those of Rotemberg price-setting under the empirical Taylor rule. We conclude

that, while the adopted form of price rigidity does matter under the empirical Taylor rule, it does not matter

under the optimal monetary policy.
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Appendices

A Calvo Model: Ramsey-Optimal Policy Problem

In the Calvo model, the Ramsey problem under commitment can be described as follows. Let {λ1,t, λ2,t,

λ3,t, λ4,t, λ5,t, λ6,t, λ7,t, λ8,t, λ9,t, λ10,t}∞t=0 represent sequences of Lagrange multipliers on the constraints

(1), (2), (6), (9), (10), (11), (12), (13), (14), and (15). Given an initial value for the price disper-

sion ∆t−1 and a set of stochastic processes
{
At, σ

A
t

}∞
t=0

, the allocation plans for the control variables

{Ct, Nt, wt, Rt,mct, πt, Yt, p?t , p1,t, p2,t,∆t}∞t=0, and for the co-state variables {λ1,t, λ2,t, λ3,t, λ4,t, λ5,t, λ6,t,

λ7,t, λ8,t, λ9,t, λ10,t}∞t=0, represent an optimal allocation if they solve the following maximization problem:

maxE0

∞∑
t=0

βt
(
Ct

1−γ

1− γ
− χNt

1+η

1 + η

)
, (A.1)

subject to (1), (2), (6), (9), (10), (11), (12), (13), (14), and (15). The augmented Lagrangian for the optimal

policy problem then reads as follows:

maxE0

∞∑
t=0

βt
[(

Ct
1−γ

1− γ
− χNt

1+η

1 + η

)
+ λ1,t

(
Ct
−γwt − χNtη

)
+ λ2,t

(
βCt+1

−γRt − Ct−γπt+1

)
+λ3,t (mctAt − wt) + λ4,t (ε (1− τ) p1,t − (ε− 1) p?t p2,t) + λ5,t

(
p1,t − Ct−γmctYt − θβπt+1

εp1,t+1

)
+λ6,t

(
Ct
−γYt + θβπt+1

ε−1p2,t+1 − p2,t
)

+ λ7,t

(
θπt

ε−1 − 1 + (1− θ) p?t
1−ε
)

+ λ8,t (AtNt −∆tYt)

+λ9,t (Yt − Ct) + λ10,t

(
∆t − (1− θ) p?t

−ε − θπtε∆t−1

)]
.

(A.2)

The first-order conditions are as follows:

[Ct] : Ct
−γ + γEtλ2,tCt

−γ−1πt+1 + γλ5,tCt
−γ−1mctYt

= γλ1,tCt
−γ−1wt + γλ6,tCt

−γ−1Yt + λ9,t + γλ2,t−1Ct
−γ−1Rt−1,

(A.3)

[Nt] : χNt
η + χηλ1,tNt

η−1 = λ8,tAt, (A.4)

[wt] : λ1,tCt
−γ = λ3,t, (A.5)

[Rt] : βEtλ2,tCt+1
−γ = 0, (A.6)

[mct] : λ3,tAt = λ5,tCt
−γYt, (A.7)
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[πt] : θ (ε− 1)λ7,tπt
ε−2 + θ (ε− 1)λ6,t−1πt

ε−2p2,t

= θελ10,tπt
ε−1∆t−1 + θελ5,t−1πt

ε−1p1,t +
1

β
λ2,t−1Ct−1

−γ ,
(A.8)

[Yt] : λ5,tCt
−γmct + λ8,t∆t = λ6,tCt

−γ + λ9,t, (A.9)

[p?t ] : (ε− 1)λ4,tp2,t = (1− θ) (1− ε)λ7,tp?t
−ε + (1− θ) ελ10,tp?t

−ε−1, (A.10)

[p1,t] : ε (1− τ)λ4,t + λ5,t = θλ5,t−1πt
ε, (A.11)

[p2,t] : (ε− 1)λ4,tp
?
t + λ6,t = θλ6,t−1πt

ε−1, (A.12)

[∆t] : λ8,tYt = λ10,t − θβEtλ10,t+1πt+1
ε, (A.13)

[λ1,t] : χNt
η = Ct

−γwt, (A.14)

[λ2,t] : Ct
−γ = βEtCt+1

−γ Rt
πt+1

, (A.15)

[λ3,t] : mct =
wt
At
, (A.16)

[λ4,t] : p?t =
ε

ε− 1

(1− τ) p1,t
p2,t

, (A.17)

[λ5,t] : p1,t = Ct
−γmctYt + θβEtπt+1

εp1,t+1, (A.18)

[λ6,t] : p2,t = Ct
−γYt + θβEtπt+1

ε−1p2,t+1, (A.19)

[λ7,t] : θπt
ε−1 = 1− (1− θ) p?t

1−ε, (A.20)

[λ8,t] : ∆tYt = AtNt, (A.21)

[λ9,t] : Yt = Ct, (A.22)

[λ10,t] : ∆t = (1− θ) p?t
−ε + θπt

ε∆t−1. (A.23)

B Rotemberg Model: Ramsey-Optimal Policy Problem

In the Rotemberg model, the Ramsey problem under commitment can be described as follows. Let {λ1,t, λ2,t,

λ3,t, λ4,t, λ5,t, λ6,t}∞t=0 represent sequences of Lagrange multipliers on the constraints (1), (2), (6), (16), (17),

and (18). Given a set of stochastic processes
{
At, σ

A
t

}∞
t=0

, the allocation plans for the control variables

{Ct, Nt, wt, Rt,mct, πt, Yt}∞t=0, and for the co-state variables {λ1,t, λ2,t, λ3,t, λ4,t, λ5,t, λ6,t}∞t=0, represent an
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optimal allocation if they solve the following maximization problem:

maxE0

∞∑
t=0

βt
(
Ct

1−γ

1− γ
− χNt

1+η

1 + η

)
, (B.1)

subject to (1), (2), (6), (16), (17), and (18). The augmented Lagrangian for the optimal policy problem then

reads as follows:

maxE0

∞∑
t=0

βt
[(

Ct
1−γ

1− γ
− χNt

1+η

1 + η

)
+ λ1,t

(
Ct
−γwt − χNtη

)
+ λ2,t

(
βCt+1

−γRt − Ct−γπt+1

)
+λ3,t (mctAt − wt)

+λ4,t
(
ψCt

−γ (πt − 1)πtYt − ψβCt+1
−γ (πt+1 − 1)πt+1Yt+1 − (1− ε)Ct−γYt − ε (1− τ) (Ct

−γmctYt
)

+λ5,t (AtNt − Yt) + λ6,t

(
Yt − Ct −

ψ

2
(πt − 1)

2
Yt

)]
.

(B.2)

The first-order conditions are as follows:

[Ct] : Ct
−γ + γEtλ2,tCt

−γ−1πt+1 + ψγλ4,t−1Ct
−γ−1(πt − 1)πtYt

= γλ1,tCt
−γ−1wt + γλ4,tCt

−γ−1Yt (ψ (πt − 1)πt − 1 + ε− ε (1− τ)mct) + λ6,t + γλ2,t−1Ct
−γ−1Rt−1,

(B.3)

[Nt] : χNt
η + χηλ1,tNt

η−1 = λ5,tAt, (B.4)

[wt] : λ1,tCt
−γ = λ3,t, (B.5)

[Rt] : βEtλ2,tCt+1
−γ = 0, (B.6)

[mct] : λ3,tAt = ε (1− τ)λ4,tCt
−γYt, (B.7)

[πt] : ψλ4,tCt
−γ (2πt − 1)Yt = ψλ6,t (πt − 1)Yt +

1

β
λ2,t−1Ct−1

−γ + ψλ4,t−1Ct
−γ (2πt − 1)Yt, (B.8)

[Yt] : λ4,tCt
−γ (ψ(πt − 1)πt − 1 + ε− ε (1− τ)mct) + λ6,t

(
1− ψ

2
(πt − 1)

2

)
= λ5,t + ψλ4,t−1Ct

−γ (πt − 1)πt,

(B.9)

[λ1,t] : χNt
η = Ct

−γwt, (B.10)

[λ2,t] : Ct
−γ = βEtCt+1

−γ Rt
πt+1

, (B.11)

[λ3,t] : mct =
wt
At
, (B.12)

17



[λ4,t] : ψ (πt − 1)πt = ψβEt

(
Ct+1

Ct

)−γ
(πt+1 − 1)πt+1

Yt+1

Yt
+ 1− ε+ ε (1− τ)mct, (B.13)

[λ5,t] : Yt = AtNt, (B.14)

[λ6,t] : Yt = Ct +
ψ

2
(πt − 1)

2
Yt. (B.15)
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