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STOCHASTIC EXTENDED PATH

STÉPHANE ADJEMIAN AND MICHEL JUILLARD

Abstract. The Stochastic Extended Path (SEP) method enhances the traditional Ex-
tended Path technique by integrating numerical methods to estimate conditional ex-
pectations. In contrast to the deterministic Extended Path, which presumes that fu-
ture shocks will align with their expected values, SEP accommodates stochastic non-
linearity by performing integration over future shocks. We employ numerical tech-
niques, including Gaussian quadrature and unscented transforms, to efficiently ap-
proximate integrals while alleviating the challenges posed by the curse of dimension-
ality. To further enhance accuracy, we propose a hybrid strategy that merges SEP with
perturbation methods to effectively address long-run uncertainty effects. We evaluate
the performance of SEP in an asset pricing model with a closed-form solution and
demonstrate the methodology using a Real Business Cycle (RBC) model featuring irre-
versible investment.

Introduction

The extended path approach, initially introduced by Fair and Taylor (1983) and im-
plemented in Dynare, utilizes perfect foresight model solvers to effectively address
deterministic nonlinearities related to preferences, technology functional forms, or
occasionally binding constraints. In each period of the simulation, exogenous inno-
vations are treated as surprise shocks occurring in the first period of a deterministic
simulation, with shocks thereafter set to their expected values. This approach offers
significant advantages over other global approximation methods, including the ability
to simulate very large models and its simplicity, as it is not model-dependent and re-
quires no more effort than composing a Dynare *.mod file.

This approach, which relies on perfect foresight model solvers, inherently overlooks
Jensen’s inequality. While the extended path method can handle deterministic non-
linearity with arbitrary precision, it remains unaddressed regarding stochastic non-
linearity. Since future shocks are anticipated to equal their expectations, current agent
behavior is unaffected by future uncertainty. According to Gagnon (1990) and Love
(2009), who analyze an RBC model, this approximation has minimal effects. However,
Adjemian and Juillard (2011) demonstrated, in the context of an NK model with a
zero lower bound on nominal interest rates, that neglecting future uncertainty is in-
consequential only when the interest rate constraint is non-binding. In this paper, we
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2 S. ADJEMIAN AND M. JUILLARD

propose relaxing the assumption about future shocks by employing numerical inte-
gration to approximate conditional expectations.

The Stochastic Extended Path approach (SEP), similar to the deterministic Extended
Path approach, generates time series for the model’s endogenous variables without ex-
plicitly calculating a reduced form that links choice variables to state variables1. This
method is advantageous in cases where the model’s reduced form is poorly behaved
due to high non-linearity or kinks, which makes it challenging to approximate. How-
ever, a drawback is that it does not leverage the problem’s recursive structure, limiting
its ability to fully account for future uncertainty. Specifically, it requires integration
over shocks in all future periods, which may not be feasible2. The Stochastic Extended
Path of order p simplifies future uncertainty by positing that shocks will occur in the
next p periods, with subsequent shocks set to their expected values. Agents then ex-
pect that the economy goes back to the deterministic steady state.

Section 1 introduces the class of models being examined and the Extended Path ap-
proach. Section 2 addresses modifications to the Extended Path approach to incorpo-
rate the impact of future uncertainty. Additionally, we conduct accuracy checks using
a model where future uncertainty is significant and for which a closed-form solution
is available. Section 3 presents a numerical illustration considering a Real Business
Cycle (RBC) model with irreversible investment.

1. Extended Path

We assume that the model can be expressed in the following manner:

(1) Et [ f (yt−1, yt, yt+1, εt)] = 0

where yt is an n × 1 vector of endogenous variables, εt is a ns × 1 random vector
of innovations, and f : R3n+ns → Rn is a continuous function. The innovations are
assumed to be independent and identically distributed and follow a Gaussian distri-
bution: N (0, Σ). The assumption regarding the distribution of innovations can be
relaxed; however, this would necessitate the use of different numerical integration
rules in section 2. The conditional expectation is presented above the function f , but
we could readily extend this to consider conditional expectations under a nonlinear
function by incorporating additional auxiliary variables. Similarly, we could address
an arbitrary number of lags or leads by utilizing auxiliary variables. We do not as-
sume that the function f is differentiable everywhere, which is why the extended path
approach can accommodate scenarios where the left and right derivatives differ due
to occasionally binding constraints. Nevertheless, it is evident that solving a model is

1Note however that, in a subsequent stage, one can estimate this relationship using the time series gen-
erated by the SEP approach. The fitted polynomial can serve as an initial guess for the Parameterized
Expectations Algorithm or be used to extend the simulation with significantly reduced computational
costs.
2Note that the pertubation approach fully account for future uncertainty conditionally on a given ap-
proximation order, in this sense it does not account for all the future uncertainty.
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always easier when f is differentiable at all points3. We also assume that the model
has a deterministic steady state and that the economy converges to this steady state in
the long run. There exists a vector of endogenous variables y⋆ such that:

f (y⋆, y⋆, y⋆, 0) = 0

and limh→∞ yt+h = y⋆ for all yt−1. This assumption could be relaxed; what is essential
is a terminal condition for the endogenous variables. As long as we know where the
economy goes in the long run (for instance, along a balanced growth path), the method
described below can be accommodated.

1.1. Perfect foresight model. Perfect foresight models are commonly employed to
generate impulse response functions. Starting with an initial condition yt−1 and an
unexpected shock occurring in period t, εt, we aim to find the trajectory of the en-
dogenous variables under the assumptions that (i) subsequent shocks are set to their
expected values, (ii) the model reaches the steady state y∗ in period t + H.

(2)


f (yt−1, yt, yt+1, εt) = 0
f (yt−1+h, yt+h, yt+h+1, 0) = 0 ∀ h = 0, . . . , H − 2
f (yt+H−2, yt+H−1, y⋆, 0) = 0

Comparing this system of equations to equation (1), assumption (i) suggests that it is
legitimate to pass the expectation operator inside the function f . This is obviously a
crude approximation, since f is a priori a non-linear funtion. Assumption (ii) is less
concerning, as the distance to the steady state can be made arbitrarily small with a
sufficiently large simulation horizon, H.

Concatenating all the vectors of endogenous variables in the nH × 1 vector Yt =(
y′t, y′t+1, . . . , y′t+H−1

)
’ the system of equations to be solved can be written as:

F(Yt) = 0

where F : RnH → RnH is a function that aggregates the functions f across all peri-
ods. Laffargue (1990) demonstrates that perfect foresight models can be solved using
Newton-type methods, taking advantage of the sparse structure of the Jacobian of F,
which is block tridiagonal. In the Newton approach, the solution for vector Y is found
iteratively. For an initial guess Y(0)

t , usually the steady state or a path generated by a
first order apporoximation of the model, successive approximated solutions Y(k)

t are
obtained by solving the following linear problem:

F
(

Y(k)
t

)
+ JF

(
Y(k)

t

) (
Y(k+1)

t −Y(k)
t

)
= 0

3When calculating the derivatives of an equation that includes the binary operators max or min, Dynare
returns the derivative of the first argument in the event of a tie between the two arguments. This
behavior can lead to a deterministic simulation failing with max (φ(y), ψ(y)) while succeeding with
max (ψ(y), φ(y)) in an equation.
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where JF

(
Y(k)

t

)
is the Jacobian matrix of F evaluated at the current trajectory for the

endogenous variables Y(k)
t . With current computers, standard algorithms for solving

sparse linear problems, such as those developed by Davis (2006), and available in Mat-
lab or Octave, for example, can be used very efficiently in this framework.

1.2. Extended path algorithm. To simulate stochastic models, Fair and Taylor (1983)
propose the following approach: for each period in the stochastic simulation, draw
a random vector of stochastic shocks εt; run an auxiliary deterministic version of the
model4, assigning the shocks in the first period to εt while setting all future shocks
to zero; then, use the values of the endogenous variables from the first period of this
auxiliary model as the values of the endogenous variables in period t of the stochastic
simulation. Below is a sketch of the algorithm:

Algorithm 1 Extended path algorithm

1. H ← Set the horizon of the perfect foresight models
2. y0 ← Choose an initial condition
3. for t = 1 to T do
4. εt ← Draw a random vector from a gaussian distribution N (0, Σ)
5. yt ← Solve the auxiliary perfect foresight model using yt−1 as the initial condi-

tion, with the terminal condition yt+H = y⋆
6. end for

In iteration t of the main loop, the initial guess for the auxiliary perfect foresight
model solver is constructed from the solution of the same model in step t− 1. In this
approach, conditional expectations are approximated by setting the shocks to zero,
their expected value. This method overlooks Jensen’s inequality and simulates a sto-
chastic scenario based on a form of certainty equivalence. Whether this poses a prob-
lem depends on the specific model being used. In this model, agents operate under
the premise that future shocks will not occur. However, in each subsequent period,
they encounter new non-zero realizations of these shocks. Despite facing these fluc-
tuations, they gain no insights about the future uncertainty from their experiences in
each period. It is important to note that a perturbation approach based on a first-order
approximation of the model would encounter similar limitations, failing to address
the deterministic nonlinearity inherent in the model. In contrast, the Extended Path
approach accepts certainty equivalence as a trade-off for comprehensively accounting
for the deterministic nonlinearity. Another advantage of this approach is its ability
to accurately simulate models with variables that significantly deviate from the deter-
ministic steady state, where perturbation methods would yield inaccurate solutions.
Finally, in contrast to perturbation-based solutions, this approach enables the incorpo-
ration of an arbitrary number of occasionally binding constraints, as we do not require

4It is important to note that we employ a relaxation method to solve the perfect foresight auxiliary model
in Dynare, while Fair and Taylor (1983) utilized a shooting method, which is known to be less efficient.

http://www.dynare.org


STOCHASTIC EXTENDED PATH 5

the differentiability of f .

The Extended Path approach allows for the simulation of large models with arbitrary
precision, as the number of required operations increases only polynomially with the
number of endogenous variables (the primary task when solving the auxiliary perfect
foresight model consists in solving a sparse system of linear equations). This contrasts
with a global approximation of the policy rules or expectations, where the complex-
ity grows exponentially. The Extended Path approach is not affected by the so-called
curse of dimensionality concerning the number of state variables.

2. Stochastic Extended Path

To accommodate non-zero shocks in periods t + 1, t + 2, . . . , t + p (p ≥ 1), it is nec-
essary to explicitly compute the (conditional) expectations for the periods t, t + 1, . . . ,
t + p − 1. We begin by outlining various approaches employed in Dynare for ap-
proximating integrals. Next, we detail the computation of conditional expectations.
Following that, we assess the stochastic extended path approach by comparing its
results with those of a model that has a closed-form solution. Lastly, based on the
findings from this comparison, we suggest modifications to the stochastic extended
path approach.

2.1. Numerical integration.

2.1.1. Gaussian quadrature. Let X be a Gaussian random variable with mean zero and
variance σ2

x > 0. We aim to evaluate E[φ(X)], where φ is a continuous function.
Calculating the expectation involves evaluating the following integral:

E[φ(X)] =
1

σx
√

2π

∫ ∞

−∞
φ(x)e

− x2

2σ2
x dx.

which can be approximated using a well-established result (refer to Judd (1998)):

∫ ∞

−∞
ϕ(x)e−x2

dx =
m

∑
i=1

ωiϕ(xi) +
m!
√

m
2m

ϕ(2m)(ξ)

(2m)!

for any ξ ∈ R. Here, the last term on the right-hand side reflects the approximation
error, where xi (for i = 1, . . . , m) denote the roots of an order m Hermite polynomial,
and the weights ωi are positive. For a specified order of approximation m, the ap-
proximation error is proportional to the order 2m derivative of the integrand. This
result indicates that it is feasible to derive a sequence of weights ωi such that evalu-
ating the integral using the right-hand side provides exact results for any polynomial
of order 2m− 1. The method described by Golub and Welsch (1969) outlines the pro-
cess for calculating the quadrature weights and nodes (ωi, xi) through the eigenvalues
and eigenvectors of a symmetric tridiagonal matrix. A change of variables is required
to evaluate E[φ(X)]. We set z = x

σx
√

2
and use the following approximation for the

expectation:

http://www.dynare.org
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E[φ(X)] ≈ 1√
π

m

∑
i=1

ωi φ(zi).

In our models, we often have multiple sources of uncertainty, i.e. more than one shock,
necessitating consideration of cases where X is a random vector. If X is a multivariate
Gaussian random variable, we can employ a tensor product approach. Specifically, if
X is defined in Rns with E[X] = 0 and V[X] = Σ, and ψ(x) is a function mapping Rns

to Rn, we utilize the following approximation:

E[ψ(X)] = (2π)−
m
2 Σ−

1
2

∫
Rm

ψ(x)e−
1
2 x′Σ−1xdx

≈ π−
m
2

ns

∑
i1=1

ns

∑
i2=1
· · ·

ns

∑
im=1

ωi1 ωi2 · · ·ωim ψ(z1
i1 , z2

i2 , . . . , zm
im
)

where we define the change of variables as z ≡ (z1, z2, . . . , zq)′ = Σ−
1
2 x/
√

2. A notable
limitation of this tensor product rule is that the number of function evaluations for ψ
grows exponentially with the dimensionality of X. There is a curse of dimensionality
regarding the number of shocks. Computationally more efficient alternatives exist.

2.1.2. Unscented transforms. As the number of shocks increases, the Gauss-Hermite for-
mula and tensor products become impractical. An alternative approach is to utilize
monomial formulas (refer to Stroud (1971)). Recently, the theory of unscented trans-
forms has revisited this topic, as discussed in Julier, Uhlmann, and Durrant-Whyte
(2000) and Julier (2002).

The Unscented Transform is a method used to estimate how a probability distribution
evolves under a nonlinear mapping. Essentially, it provides a means to approximate
an integral involving a nonlinear function of a random variable without depending on
quadrature methods or Monte Carlo simulations. This technique has been developed
within the framework of nonlinear filters designed to estimate nonlinear state space
models. Julier, Uhlmann, and Durrant-Whyte (2000) present an appealing and cost-
effective method for integration in Rns , utilizing a formula that involves 2ns + 1 nodes,
referred to as sigma points in the literature. Defining the matrix P such that P′P = Σ,
the nodes are given by:

x1 = 0
xi =

√
ns + κPi for i = 1, . . . , ns

xi = −
√

ns + κPi for i = ns + 1, . . . , 2ns + 1

where κ is a positive real scaling parameter. The corresponding weights are defined
as: {

ω1 = κ
m+κ

ωi =
1

2(m+κ)
for all i > 1
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The unscented transformation allows us to accurately recover the mean and covariance
matrix for any third-order polynomial function of X. The adjustable parameter κ can
be utilized to align with other moments or characteristics of the distribution of φ(X).

2.2. Trees of possible futures. Given a set of weights and nodes (ωi, ϵi)
m
i=1 where m

is odd, ensuring that ϵ1 = 0 serves as the central node, we construct a stochastic
extended path simulation of order 1 by substituting the auxiliary perfect foresight
model, as detailed in equation (2), with:

m

∑
i=1

ωi f
(

yt−1, yt, yi
t+1, εt

)
= 0

i=
1,

..
.,

m


f
(
yt, yi

t+1, yi
t+2, ϵi

)
= 0

f
(
yi

t+1, yi
t+2, yi

t+3, 0
)
= 0

...
f
(
yi

t+H−2, yi
t+H−1, y⋆, 0

)
= 0

(3)

in the main loop of the extended path algorithm 1. The initial block of n rows serves
to approximate the conditional expectation for period t. Following this block, there
are m deterministic trajectories leading to the steady state. For each shock state ϵ in
period t + 1, we must solve a perfect foresight problem over H− 2 periods, akin to the
formulation presented in equation (2). It is important to recognize that these problems
cannot be treated in isolation due to their shared initial condition, yt, which remains to
be determined. Given that all possible futures share a common history (yt−1, which is
predetermined, and yt, which will be determined as part of the solution to the system
of equations (3)), we cannot simply derive yt by averaging m perfect foresight simula-
tions in parallel5.

This system of equations is larger than the one addressed in section 1.1, comprising
n+ nm(H− 1) equations compared to the nH equations of the perfect foresight model.
Nevertheless, we can still apply a similar Newton-based approach to tackle the aux-
iliary model. It is important to note, however, that the Jacobian matrix of the stacked
equations is no longer block tridiagonal.

Obviously, we would like to go further by approximating the conditional expectations
over the first p periods.

5It is indeed feasible to explicitly parallelize the solution algorithm by utilizing nested Newton solvers.
For a specified value of yt, we can concurrently solve the m perfect foresight models, employing the
strategy outlined in section 1.1. Subsequently, we only need to determine yt using another Newton-type
algorithm that integrates the parallelized solvers for the periods spanning from t + 1 to t + H − 1. We
did not explore this possibility as we found the direct approach to be simpler; however, this strategy
may prove beneficial as the model scales, either due to the complexity of the model itself or an increased
number of integration nodes.
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2.2.1. Future as a perfect m-ary tree. The most obvious way to account for future un-
certainty between t and t + p is to consider all the possible sequences of discretized
shocks on p periods. This correspond to a perfect m-ary tree. Figure 1 represent such
a tree for the second order stochastic extended path. The m-ary tree’s leaves are zero
shock trajectories between periods t + p + 1 and t + H − 1 of the auxiliary model. In-
tegral approximations for conditional expectations are calculated at each node of the
tree, except for the terminal nodes where we revert to a standard perfect foresight
model.

At the base of the tree, corresponding to period t of the auxiliary model, we must
have:

(4.a)
m

∑
i1=1

ωi1 f
(

yt−1, yt, yi1
t+1, εt

)
= 0

Moving to the first level of the tree, representing period t + 1 of the auxiliary model,
we must satisfy the following m equations, one for each node:

(4.b)
m

∑
i2=1

ωi2 f
(

yt, yi1
t+1, yi2,i1

t+1, ϵi1

)
= 0 ∀ i1 ∈ {1, . . . , m}

In the second level of the tree, we encounter m2 equations that must be fulfilled:

(4.c)
m

∑
i3=1

ωi3 f
(

yi1
t+1, yi2,i1

t+2, yi3,i2,i1
t+3 , ϵi2

)
= 0 ∀ (i1, i2) ∈ {1, . . . , m}2

This process continues up to level p− 1 of the tree, where mp−1 equations must simi-
larly be satisfied:

(4.d)
m

∑
ip=1

ωip f
(

yip−2,...,i1
t+p−2 , y

ip−1,...,i1
t+p−1 , yip,...,i1

t+p , ϵip−1

)
= 0 ∀ (i1, . . . , ip−1) ∈ {1, . . . , m}p−1

Subsequently, starting from the terminal nodes of the m-ary tree of height p, we must
resolve mp perfect foresight problems over H − p− 1 periods:

f
(

y
ip−1,...,i1
t+p−1 , yip,...,i1

t+p , yip,...,i1
t+p+1, ϵip

)
= 0 ∀ (i1, . . . , ip) ∈ {1, . . . , m}p

f
(

yip,...,i1
t+p , yip,...,i1

t+p+1, yip,...,i1
t+p+2, 0

)
= 0 ∀ (i1, . . . , ip) ∈ {1, . . . , m}p

...

f
(

yip,...,i1
t+H−2, yip,...,i1

t+H−1, y⋆, 0
)
= 0 ∀ (i1, . . . , ip) ∈ {1, . . . , m}p

(4.e)

The system of equations (4.a)–(4.e), similar to the first-order stochastic extended path
auxiliary model (3), is inherently non-separable. However, it can still be solved, in
principle, through the application of a Newton-based algorithm. However, the number
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of unknown vectors y grows exponentially with p and polynomially with m. The total
number of unknown vectors of size n× 1 can be expressed as follows:

C⋆(m, p, H) = 1 + m + m2 + · · ·+ mp−1 + mp(H − p)

=
mp − 1
m− 1

+ mp(H − p)

This indicates that the size of the linear system to be solved in each iteration of the
Newton algorithm is given by nC⋆(m, p, H). Moreover, the Jacobian matrix is sparse,
and the total number of non-zero n× n blocks6 can be computed as:

nnz⋆(m, p, H) = 1 + m + (2 + m)
mp −m
m− 1

+ 3mp(H − p)−mp

As a result, the ratio of non-zero blocks to the overall number of blocks, indicated by
C⋆ 2, tends to diminish towards zero as either m or p increases. Figure 3 illustrates the
distribution of the non-zero n × n blocks within the stacked Jacobian matrix for the
scenario where p = 2 and m = 3. In practical applications involving this tree structure,
we can only consider moderate orders of the stochastic extended path algorithm.

2.2.2. Sparse tree of future innovations. Employing the perfect m-ary tree presented above
is infeasible for large values of p or m. Trimming the tree by eliminating branches with
low probabilities (as determined by the products of quadrature weights) offers limited
benefits, as the pruned tree would still expand exponentially with respect to p.

The trunk of the m-ary tree is defined by traversing the central nodes from one period
to the next, which happen to be the nodes evaluating to zero7. We develop a sparse
tree structure by eliminating branches that do not directly emerge from the trunk. This
fishbone-shaped sparse tree features a linear growth in the number of nodes with re-
spect to p or m. This framework is analogous to a monomial rule, where innovations
occurring in various periods are regarded as separate shocks. Figure 2 illustrates this
sparse tree in the context of the second-order stochastic extended path.

Let Let yi
t,s represent the vector of endogenous variables at time s > t along a branch

that diverges from the trunk at time t due to the anticipated shock (integration node)
ϵi. The sequence yt (at the base of the tree), y1

t,t+1, y1
t+1,t+2, . . . , y1

t+p−1,t+p represents
the path of the endogenous variables along the trunk. All the approximate integrals
are located along the trunk.

At the base of the tree, corresponding to period t of the auxiliary model, we have the
following condition:

6Typically, these blocks are sparse matrices themselves, as not all variables appear in every equation
within a standard model.
7In the case of Gaussian quadrature we consider an odd number of nodes.
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(5.a)
m

∑
i=1

ωi f
(

yt−1, yt, yi
t,t+1, εt

)
= 0

This equation mirrors the one found at the base of a perfect m-ary tree. Advancing
to the first level of the tree, which represents period t + 1 of the auxiliary model, we
encounter the following system of m equations that must be satisfied:

(5.b)

∑m
i=1 ωi f

(
yt, y1

t,t+1, yi
t+1,t+2, ϵ1

)
= 0

f
(

yt, yi
t,t+1, yi

t,t+2, ϵi

)
= 0 ∀ i ∈ {2, . . . , m}

Here, ϵ1, the central integration node, is equal to zero. Moving to the second level of
the tree, we now have 2(m− 1) + 1 equations to solve:

(5.c)


∑m

i=1 ωi f
(

y1
t,t+1, y1

t+1,t+1, yi
t+2,t+3, ϵ1

)
= 0

f
(

yi
t,t+1, yi

t,t+2, yi
t,t+3, 0

)
= 0 ∀ i ∈ {2, . . . , m}

f
(

y1
t,t+1, yi

t+1,t+2, yi
t+1,t+3, ϵi

)
= 0 ∀ i ∈ {2, . . . , m}

At level h < p, corresponding to period t + h of the auxiliary model, we have system
of h(m− 1) + 1 equations:

(5.d)



∑m
i=1 ωi f

(
y1

t+h−2,t+h−1, y1
t+h−1,t+h, yi

t+h,t+h+1, ϵ1

)
= 0

f
(

yi
t,t+h−1, yi

t,t+h, yi
t,t+h+1, 0

)
= 0 ∀ i ∈ {2, . . . , m}

f
(

yi
t+1,t+h−1, yi

t+1,t+h, yi
t+1,t+h+1, 0

)
= 0 ∀ i ∈ {2, . . . , m}

...

f
(

y1
t+h−2,t+h−1, yi

t+h−1,t+h, yi
t+h−1,t+h+1, ϵi

)
= 0 ∀ i ∈ {2, . . . , m}

In level p, we do not compute approximate integrals and are only addressing deter-
ministic problems, which results in a system comprising p(m− 1) + m equations:

(5.e)



f
(

y1
t+p−2,t+p−1, yi

t+p−1,t+p, yi
t+p−1,t+p+1, ϵi

)
= 0 ∀ i ∈ {1, . . . , m}

f
(

yi
t,t+p−1, yi

t,t+p, yi
t,t+p+1, 0

)
= 0 ∀ i ∈ {2, . . . , m}

f
(

yi
t+1,t+p−1, yi

t+1,t+p, yi
t+1,t+p+1, 0

)
= 0 ∀ i ∈ {2, . . . , m}

...

f
(

yi
t+p−2,t+p−1, yi

t+p−1,t+p, yi
t+p−1,t+p+1, 0

)
= 0 ∀ i ∈ {2, . . . , m}

Finally, for all subsequent periods of the auxiliary model up to period t + H − 1, we
establish the following conditions for h = p + 1, . . . , H:
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(5.f)



f
(

yi
t,t+h−1, yi

t,t+h, yi
t,t+h+1, 0

)
= 0 ∀ i ∈ {2, . . . , m}

f
(

yi
t+1,t+h−1, yi

t+1,t+h, yi
t+1,t+h+1, 0

)
= 0 ∀ i ∈ {2, . . . , m}

...

f
(

yi
t+h−2,t+h−1, yi

t+h−1,t+h, yi
t+h−1,t+h+1, 0

)
= 0 ∀ i ∈ {1, . . . , m}

In the last block of equations, yt+H = y⋆ in the period t + H − 1 of the auxiliary
model. As in section 2.2.1 this system of nonlinear equations can be solved with a
Newton-based algorithm. The number of unknown n× 1 vectors to be solved for is:

C(m, p, H) = H +
p

∑
i=1

(m− 1)(H − i)

= (1 + (m− 1)p) H − p(p + 1)
2

The number of non zero n× n blocks in the stacked Jacobian is:

nnz(m, p, H) =

EP︷ ︸︸ ︷
3H − 2+

Approximate
integrals︷ ︸︸ ︷

(m− 1)p︸ ︷︷ ︸
Along the trunk

+(m− 1)
p−1

∑
i=1

(3(H − 1− i) + 2)

Compared to section 2.2.1 with a perfect m-ary tree, the Jacobian matrix is smaller
in size, with its growth occurring linearly with respect to p or m; however, it also is
denser. As in section 2.2.1, the proportion of non zero blocks in the Jacobian matrix
converges to zero as p tends to infinity. Figure 4 illustrates the distribution of the
non-zero n× n blocks within the stacked Jacobian matrix for the scenario where p = 2
and m = 3.

2.3. Accuracy of the Stochastic extended path approach. To assess the accuracy of the
stochastic extended path approach, we follow Collard and Juillard (2001) and exam-
ine the asset pricing model introduced by Burnside (1998). This model is particularly
relevant here as it generates a significant difference between the deterministic steady
state and the unconditional expectation, in this sense future uncertainty matters. It
also has the advantage, as shown by Burnside (1998), of having a closed-form solu-
tion. We can therefore assess approximation errors by comparing simulations with the
stochastic extended path approach and simulations based on the exact solution. We
do not claim that this model should be simulated using our approach, as perturbation
is significantly more efficient. We consider this model solely to assess our approach’s
capability to address future uncertainty8.

Burnside (1998) shows, considering an endowment economy with a growth rate of
dividends modelled as a gaussian AR(1), that the price-dividend ratio, vt, obeys the

8Utilizing the stochastic extended path approach is reasonable only when the model exhibits significant
nonlinearities, features occasionally binding constraints, or deviates substantially from its steady state.
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following equations: {
vt = βEt

[
e(1−γ)xt+1 (1 + vt+1)

]
xt = (1− ρ)µ + ρxt−1 + εt

where xt is the growth rate of dividends, εt is a gaussian white noise, β a discount
factor and 1/γ the elasticity of intertemporal substitution. Iterating forward on vt we
find that vt is a discounted sum of conditional expectations of log-normal random
variables. Burnside (1998) shows that the exact solution for vt is:

vt =
∞

∑
i=1

βieai+bi(xt−µ)

where:

ai = (1− γ)µi +
(1− γ)2σ2

2(1− ρ)2

(
i− 2ρ

1− ρi

1− ρ
+ ρ2 1− ρ2i

1− ρ2

)
and

bi =
(1− γ)ρ (1− ρ)i

1− ρ

The deterministic steady state is obtained by setting xt = µ and σ2 = 0:

v⋆ =
∞

∑
i=1

e(1−γ)µi

and one can easily show that the unconditional expectation of the price-dividend ratio
is:

E [vt] =
∞

∑
i=1

βie
ai+

1
2

b2
i σ2

1−ρ2 > v⋆

Considering the benchmark calibration utilized in Collard and Juillard (2001) and
Burnside (1998), we obtain y⋆ ≈ 12.3035 and E [vt] ≈ 12.4815. By incorporating future
uncertainty, we determine that the unconditional expectation exceeds the determinis-
tic steady state by 1.4466%9. Is it possible to account for this gap using the stochastic
extended path approach?

9Alternatively, we can compare the deterministic steady state with the risky steady state, which assumes
the absence of current shocks while acknowledging the possibility of future shocks:

ṽ =
∞

∑
i=1

βieai

This value would be approximately equal to 12.4812 based on our calibration.
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P1 P2 EP SEP⋆(2) SEP(2)
100×mean(|v̂t − vt|/vt) 1.4261 0.0193 1.4241 1.2206 1.2532
100×min(|v̂t − vt|/vt) 1.4239 0.0000 1.4236 1.2202 1.2509
100×max(|v̂t − vt|/vt) 1.4707 0.0527 1.4250 1.2215 1.2542

Table 1. Comparison with the true solution. Columns P1 and P2
present the deviations from the true solution for first and second or-
der perturbations. EP denotes the extended path (which assumes no
future uncertainty), while the SEP⋆ and SEP columns correspond to the
second order stochastic extended path, using a perfect tree and a sparse
tree, respectively.

We constructed Table 1 by simulating the model using the true solution, terminating
the infinite sum after 800 periods, and comparing these "true data" with simulations
generated via perturbation and stochastic extended path methods. As anticipated, the
extended path simulations closely resemble those produced by a first-order approxi-
mation around the steady state. While the accuracy errors are marginally lower with
the extended path approach, both methodologies operate under certainty equivalence.
The second-order stochastic extended path, whether implemented through a perfect
tree or a sparse tree, demonstrates notable improvements compared to the extended
path method. However, we still observe a significant gap in accuracy compared to the
local second-order approximation around the deterministic steady state. Our analysis
indicates that accuracy errors diminish as the order of approximation in the stochas-
tic extended path increases; however, the improvement tends to be rather slow as the
approximation order increases. In conclusion, a notable characteristic of the accuracy
errors associated with (S)EP is their significantly lower volatility compared to those
derived from perturbation methods, as evidenced by the difference between the min-
imum and maximum errors. This observation suggests that the erros do not depend
much on the state of the economy and that the component we are overlooking remains
relatively constant.

What order of approximation is necessary to beat the second-order perturbation or
to obtain an unconditional expectation for v that is closer to its true value? To estab-
lish a lower bound, we can analytically compute the unconditional expectation of v
when utilizing the stochastic extended path approach, assuming that there are no ac-
curacy errors in the quadratures employed at each node of the tree representing future
histories.10. For the extended path we have:

v(0)t =
∞

∑
i=1

βiea(0)i +bi(xt−µ)

with
a(0)i = (1− γ)µi

10We calculate the exact solution of the asset pricing model under the assumption that non-zero future
shocks will occur solely within the next p periods.



14 S. ADJEMIAN AND M. JUILLARD

so that the unconditional expectation is:

E
[
v(0)t

]
=

∞

∑
i=1

βie
a(0)i + 1

2
b2
i σ2

1−ρ2 < E [vt]

With our calibration, we calculate that E
[
v(0)t

]
≈ 12.3038, which represents a reduc-

tion of approximately 1.4239% compared to the true unconditional expectation. More
generally, for an approximation of order p, we have:

v(p)
t =

∞

∑
i=1

βiea(p)
i +bi(xt−µ)

with

a(p)
i = (1− γ)µi +


(1−γ)2σ2

2(1−ρ)2

(
i− 2ρ

1−ρi

1−ρ + ρ2 1−ρ2i

1−ρ2

)
if i ≤ p

(1−γ)2σ2

2(1−ρ)2

(
p− 2ρ

ρi−p−ρi

1−ρ + ρ2 ρ2(i−p)−ρ2i

1−ρ2

)
otherwise.

so that the unconditional expectation is:

E
[
v(p)

t

]
=

∞

∑
i=1

βie
a(p)

i + 1
2

b2
i σ2

1−ρ2 < E [vt]

Table 2 illustrates the extent to which the gap between the exact unconditional expecta-
tion, E [vt], and the unconditional expectation derived from extended path simulation,
E
[
v(0)t

]
, is narrowed as we incorporate various orders of the stochastic extended path.

To effectively capture the impacts of future uncertainty in our calibration, a large value
of p is essential. In this regard, the perturbation approach proves to be considerably
more efficient.

p Contribution in %

1 7.55
10 53.81
20 78.63
40 95.43
60 99.02
80 99.79

100 99.95
120 99.99
140 100.00

Table 2. Future uncertainty accounting. The second column presents
the proportion of the gap between E [vt] and E

[
v(0)t

]
, as attributable to

different orders of the stochastic path.
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2.4. An hybrid approach. Capturing the full effect of future volatility would, in prin-
ciple, require a high-order stochastic extended path. On the other hand, the perturba-
tion approach provides an alternative and more accurate approximation of the effects
of future volatility. The idea behind the hybrid stochastic extended path is to combine
the treatment of important nonlinearities in the model (via the stochastic extended
path method) with a broader treatment of future volatility effects (via a perturbation
approach).

Let us introduce σ, called the stochastic scale of the model, such that

εt+1 = σηt+1

where ηt is a ns× 1 gaussian random vector with zero mean and covariance matrix Ση .
It follows that the covariance of εt is then Σ = σ2 Ση . Consider the (unknown) solution
function g:

yt = g (yt−1, εt, σ)

so that the original model (1) is satisfied. Plugging g into this model, we obtain:

EtF (yt−1, εt, ηt+1, σ) = Et f (yt−1, g (yt−1, εt, σ) , g (g (yt−1, εt, σ) , σ, ηt+1, σ) , εt) = 0

From the perspective of the expectation operator Et, ηt+1 is the relevant source of un-
certainty.

The hybrid stochastic extended path approach considers a Taylor expansion of F in the
sole direction of σ. That is, we expand Et f (·) in powers of σ:

EtF (yt−1, εt, ηt+1, σ) = f (yt−1, g (yt−1, εt, 0) , g (g (yt−1, εt, 0) , 0, 0, 0) , εt)

+ Et

[
∞

∑
i=1

1
i!

∂iF
∂σi σi

]
If we consider a full tree of future histories, in the first p periods of the stochastic
extended path, the quadrature method includes both deterministic effects and future
volatility. After these first p periods, starting in period t + p − 1, the deterministic
solution (with zero shocks) corresponds to the leading term of the above expansion.
A perturbation expansion in the direction of σ can correct for longer-run volatility ef-
fects after period t + p− 1. We maintain the terminal condition of the auxiliary model,
ensuring that each leaf converges to the deterministic steady state at the end..

Specifically, in the deterministic problems at the terminal nodes11, we adjust the ex-
pected values for period t + h + 1, which are incorporated into the problem for period
t + h, as follows:

ỹt+h+1 = yt+h+1 +
1
2

gσ2

11In the case of a perfect m-ary tree, there are mp such problems at period t + p of the auxiliary model.
In a sparse tree, there are (m − 1) problems in each of the periods t + 1, . . . , p − 1 and m problems in
period t + p of the auxiliary model.
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where gσ2 is the second derivative of the solution function with respect to σ evaluated
at σ = 0.

SEP⋆(2) SEP(2) SEP⋆(2+) SEP(2+) SEP(2++)
100×mean(|v̂t − vt|/vt) 1.2206 1.2532 0.0162 0.0163 0.0004
100×min(|v̂t − vt|/vt) 1.2202 1.2529 0.0155 0.0153 0.0000
100×max(|v̂t − vt|/vt) 1.2215 1.2542 0.0173 0.0177 0.0014

Table 3. Comparison with the true solution. The columns SEP⋆(2)
and SEP(2) represent the second order stochastic extended paths, uti-
lizing both a perfect tree and a sparse tree. In contrast, the columns
SEP⋆(2+) and SEP(2+) correspond to their hybrid versions (based
on a second order approximation of the model). The final column,
SEP(2 ++), represents the second-order stochastic extended path with
a sparse tree; however, the hybrid correction relies on a fourth-order
approximation of the model.

Table 3 illustrates that the hybrid version markedly diminishes accuracy errors. In fact,
the accuracy errors are even lower than those found in the second-order perturbation
case. The maximum error with a hybrid second-order stochastic extended path is less
than half the maximum error obtained with second-order perturbation. Furthermore,
additional unreported figures show a gradual decrease in accuracy errors as the order
of the stochastic extended path increases.

We can improve the accuracy of the hybrid stochastic extended path by incorporat-
ing higher-order perturbation corrections. The final column of Table 3 illustrates that
substituting 1

2 gσ2 with the correction to the constant derived from fourth-order per-
turbation significantly improves precision.. In this context, pursuing a sixth-order (or
higher) local approximation would not yield significant benefits. The main reason for
this is that the default tolerance parameter of 1× 10−5, used by the nonlinear solvers
in Dynare, should be reduced to observe notable differences in the simulated data,
albeit at the expense of additional iterations in the Newton solver.

Thus, the hybrid stochastic extended path approach merges two strategies:

(1) A stochastic extended path method of order p to handle large short-run non-
linearities and occasionally binding constraints (such as a zero lower bound).

(2) A perturbation-based correction, capturing how uncertainty well beyond p pe-
riods contributes to the current state via higher-moment.

By adopting this approach, we maintain the essential benefits of the extended path
method for managing significant nonlinearities in the short term, while employing
perturbation techniques to account for the average effects of random fluctuations over

http://www.dynare.org
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the longer term, all without excessively increasing the complexity of the underlying
system of equations.

3. Numerical illustration

Employing the stochastic extended path approach is justifiable primarily when the
model exhibits significant deterministic nonlinearities, as seen in scenarios involving
Occasionally Binding Constraints, or when the model is permitted to deviate sub-
stantially from its deterministic steady state. As an illustration, we consider a Real
Business Cycle model with irreversible investment. The social planner problem is:

max
{ct+j,lt+j,kt+1+j}∞

j=0

Wt =
∞

∑
j=0

βju(ct+j, lt+j)

s.t.
yt = ct + it

yt = At f (kt, lt)

kt+1 = it + (1− δ)kt

it ≥ 0

At = A⋆eat

at = ρat−1 + εt

where the technology ( f ) and the preferences (u) are defined by

f (kt, lt) =
(

αkψ
t + (1− α)lψ

t

) 1
ψ

and

u(ct, lt) =

(
cθ

t (1− lt)1−θ
)1−τ

1− τ
The innovation term εt is modeled as Gaussian white noise with a mean of zero and
a variance of σ2

ε . This framework presents a compelling scenario due to the presence
of two key sources of non-linearity: (i) The functional forms related to technology and
preferences can be rendered arbitrarily non-linear, for instance, by reducing the elastic-
ity of output in relation to capital, represented as 1

1−ψ ; and (ii) An occasionally binding
constraint on investment is incorporated into the model. The first order conditions are
given by12:

uc(ct, lt)− µt = βEt

[
uc(ct+1, lt+1)

(
At+1 fk(kt+1, lt+1) + 1− δ

)
− µt+1(1− δ)

]
− ul(ct, lt)

uc(ct, lt)
− At fl(kt, lt) = 0

ct + kt+1 − At f (kt, lt)− (1− δ)kt = 0

µt (kt+1 − (1− δ)kt) = 0

12See annex A.
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where µt is the Lagrange multiplier associated to the positiveness constraint on invest-
ment. This model is exclusively considered for evaluating our simulation approach.
Our calibration does not have quantitative objectives; rather, it has been designed to
ensure that the economy reaches the minimum investment threshold while undergo-
ing significant deviations from the deterministic steady state. The discount factor is
β = 0.990, the preference parameters θ and τ are respectively equal to 0.357 and 2.000.
The technology parameters α and ψ are respectively equal to 0.450 and −0.200. The
depreciation rate is δ = 0.010. Finally, the parameters governing TFP are ρ = 0.800,
A⋆ = 1 and σ = 0.100.

Figure 5 presents the results of stochastic extended path simulations for investment
across various approximation orders (p = 0, 1, . . . , 10), specifically focusing on the
model without a positivity constraint on investment. Notably, we observe substantial
fluctuations around the deterministic steady state, with investment values occasionally
dropping into negative territory during certain intervals. Incorporating future uncer-
tainty does not alter the outcomes in this particular model. The stochastic nonlinearity
is entirely masked by the deterministic nonlinearity resulting from the very large fluc-
tuations. In contrast, Figure 6 illustrates the results obtained from applying the same
set of innovations to a model characterized by irreversible investment. We can now dis-
cern variations in the outcomes produced by the stochastic extended path algorithm as
the approximation order changes. These differences remain minimal when the econ-
omy is significantly above the steady state, but they tend to increase as we approach
or fall below that steady state. A noteworthy observation is that all the paths maintain
a consistent order based on the approximation order p. As we incorporate greater
consideration for future uncertainty, the level of investment correspondingly rises. As
the order of approximation increases, the likelihood of reaching the lower bound on
investment diminishes. Figure 7 illustrates the results of our simulations conducted
on a subsample where the constraint on investment is actively binding. The employs
figure a gradient color scheme ranging from black to red to denote the progression
of the approximation order from 0 to 10. Notably, we observe that the discrepancies
arising from increasing the approximation order p diminish as p increases. In fact,
the differences between investments simulated at orders 8 and 9, as well as those at
orders 9 and 10, are barely discernible.This suggests that a tenth-order approximation
using a sparse tree is sufficient to capture the implications of future uncertainty in this
model13.

Conclusion

The stochastic extended path approach offers great versatility and demands little extra
effort from a Dynare user, aside from simply writing the model’s equations. The trade-
off for this simplicity is that simulating long time series can be quite time-consuming,
particularly as we raise the approximation order p.

13Note also that, for this model, the simulations using the hybrid version of the stochastic extended path
would be nearly identical.

http://www.dynare.org
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A clear application of this approach is that it allows for straightforward verification
that the Extended Path method produces accurate simulations for a given model. For
example, Section 3 demonstrates that future uncertainty need not be considered in the
RBC model when investment is reversible; however, such considerations are essential
when investment is irreversible.

One possible extension of this approach lies in its application to estimation. A simple
method to consider is the Simulated Method of Moments; however, due to the com-
putational cost of the SEP, which would be further intensified by a simulation-based
approach, a conditional likelihood method may prove to be more beneficial. To imple-
ment this, we just need to invert the model by identifying the unexpected innovations
necessary to align the observed endogenous variables with the data for each period
within the sample. If there are k observed variables, this can be achieved by replacing
the k observed endogenous variables with k innovations in period t of the auxiliary
model.

Université du Mans and Dynare team

Email address: stephane@adjemian.eu

Dynare team

Email address: michel.juillard@mjui.fr
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Figure 1. Paths of future innovations as a perfect tree. Stochastic ex-
tended path of order p = 2 with m = 3 integration nodes. Perfect
ternary tree of length 3, followed by sequences of zeros (the leafs). Con-
ditional expectations are estimated at the root of the tree and at three
non-terminal nodes (integration nodes in t + 1). The leafs, after the ter-
minal nodes of the perfect tree (integration nodes in t + 2), correspond
to the deterministic trajectories leading to the steady state for the en-
dogenous variables.
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Figure 2. Paths of future innovations as a sparse tree. Stochastic ex-
tended path of order p = 2 with m = 3 integration nodes. Sparse tree
of length 2, followed by sequences of zeros (the leafs). Conditional ex-
pectations are estimated along the trunk (here in periods t and t + 1).
The leafs, after the terminal nodes of the sparse tree (ϵ2

t+1, ϵ3
t+1, ϵ2

t+2,
ϵ1

t+2 and ϵ3
t+2)), correspond to the deterministic trajectories leading to

the steady state for the endogenous variables.
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Figure 3. Partial view of the stacked jacobian with a perfect tree.
Stochastic extended path of order p = 2 with m = 3. We present only
the top-left portion of the Jacobian matrix. Each blue square represents
a non zero n× n block of derivatives. The labels on the horizontal axis
illustrate the manner in which the unknown vectors are concatenated
to construct the stacked system of equations.
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Figure 4. Partial view of the stacked jacobian with a sparse tree. Sto-
chastic extended path of order p = 2 with m = 3. We present only the
top-left portion of the Jacobian matrix. Each blue square represents a
non zero n× n block of derivatives. The labels on the horizontal axis
illustrate the manner in which the unknown vectors are concatenated
to construct the stacked system of equations.
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Figure 5. Simulation of the RBC model with reversible investment.
Stochastic extended path with orders 0 to 10 (sparse tree).
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Figure 6. Simulation of the RBC model with reversible investment.
Stochastic extended path with orders 0 to 5 (sparse tree).
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Figure 7. Simulation of the RBC model with reversible investment.
Stochastic extended path with orders 0 to 10 (sparse tree).

Appendix A. Equations of the RBC model

(A.1)

{
At = A⋆eat

at = ρaat−1 + ua,t[
cθ

t (1− lt)
1−θ

]−τ
θcθ−1

t (1− lt)
1−θ − µt

− βEt

[[
cθ

t+1(1− lt+1)
1−θ

]−τ
θcθ−1

t+1 (1− lt+1)
1−θ

×
{

α

[
α + (1− α)

(
kt+1

lt+1

)−ψ
] 1−ψ

ψ

At+1 + 1− δ

}
− µt+1(1− δ)

]
= 0

(A.2)

(A.3)
1− θ

θ

ct

1− lt
− (1− α)At

[
α

(
kt

lt

)ψ

+ 1− α

] 1−ψ
ψ

= 0

(A.4) ct + kt+1 − At

[
αkψ

t + (1− α)lψ
t

] 1
ψ − (1− δ)kt = 0

(A.5) µt (kt+1 − (1− δ)kt) = 0 with µt ≥ 0 ∀t



STOCHASTIC EXTENDED PATH 25

Equations (A.1) define the law of motion for efficiency, where at represents the cen-
tered logged total factor productivity (TFP). Equation (A.2) presents the Euler equa-
tion, while equation (A.3) outlines the first-order condition for labor supply. Equation
(A.4) describes the law of motion for the physical capital stock. Finally, equation (A.5)
establishes the complementary slackness condition resulting from the investment pos-
itivity constraint.

Appendix B. Dynare’s equations for the RBC model

Incorporating an occasionally binding constraint into a model with the extended_path
command is straightforward. This can be achieved by defining a slackness condition
within the model block, following the guidelines provided for specifying Mixed Com-
plementarity Problems, as outlined by Adjemian, Juillard, et al. (2024). Below is the
model block employed to generate figures 5 through 7:

1 model ( us e_dl l ) ;
2

3 // Logged TFP
4 e f f i c i e n c y = rho * e f f i c i e n c y ( −1) + sigma * eps i lon ;
5

6 // TFP
7 E f f i c i e n c y = E f f s t a r * exp ( e f f i c i e n c y ) ;
8

9 // Production
10 Output = E f f i c i e n c y * ( alpha * Capi ta l ( −1)^ps i +(1− alpha ) * Labour^ps i ) ^(1/ ps i ) ;
11

12 // Capi ta l law of motion
13 Capi ta l = Output−Consumption + (1 − d e l t a ) * Capi ta l ( −1) ;
14

15 // Consumption/Leisure a r b i t r a g e
16 (1 − t h e t a ) / t h e t a * Consumption/(1−Labour ) − (1 − alpha ) * ( Output/Labour ) ^(1− ps i ) ;
17

18 // Euler equation
19 ( Consumption^ t h e t a *(1 − Labour ) ^(1− t h e t a ) ) ^(1− tau ) /Consumption −

LagrangeMult ipl ier = beta * ( Consumption ( 1 ) ^ t h e t a *(1 − Labour ( 1 ) ) ^(1− t h e t a ) )
^(1− tau ) /Consumption ( 1 ) * ( alpha * ( Output ( 1 ) /Capi ta l ) ^(1− ps i ) +1− d e l t a ) +
LagrangeMult ipl ier ( 1 ) *(1 − d e l t a ) ;

20

21 // Investment
22 Investment = Output − Consumption ;
23

24 // Lagrange m u l t i p l i e r a s s o c i a t e d to the p o s i t i v i t y c o n s t r a i n t on
investment

25 LagrangeMult ipl ier = 0 ⊥ Investment > 0 ;
26

27 end ;

An arbitrary number of occasionally binding constraints (OBC) can be defined through
the same methodology. Employing Dynare’s implementation of OccBin, introduced by

http://www.dynare.org
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Guerrieri and Iacoviello (2015), would prove to be more complex and is restricted to
only two constraints. Note that the extended path approach, which does not depend
on local approximations unlike OccBin, will yield different simulations unless the
model is linear or remains in the vicinity of the deterministic steady state. Full codes
are available here:

https://github.com/stepan-a/ep-mj-30-years

https://github.com/stepan-a/ep-mj-30-years
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