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Abstract

For over three decades, Dynare has been a cornerstone of dynamic stochastic modeling
in economics, relying primarily on perturbation-based local solution methods. However,
these techniques often falter in high-dimensional, non-linear models that demand more
comprehensive approaches. This paper demonstrates that global solutions of economic
models with substantial heterogeneity and frictions can be computed accurately and swiftly
by augmenting Dynare with adaptive sparse grids (SGs) and high-dimensional model rep-
resentation (HDMR). SGs mitigate the curse of dimensionality, as the number of grid points
grows significantly slower than in traditional tensor-product Cartesian grids. Additionally,
adaptivity focuses grid refinement on regions with steep gradients or non-differentiabilities,
enhancing computational efficiency. Complementing SGs, HDMR tackles large state spaces
by approximating policy functions with a hierarchical expansion of low-dimensional terms.
Using a time iteration algorithm, we benchmark our approach on an international real
business cycle model. Our results show that both SGs and HDMR alleviate the curse of
dimensionality, enabling accurate solutions for at least 100-dimensional models on stan-
dard hardware in relatively short times. This advancement extends Dynare’s capabilities
beyond perturbation approaches, establishing a versatile platform for sophisticated non-
linear models and paving the way for integrating the most recent global solution methods,
such as those from machine learning.
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1 Introduction

Motivation. Over the past three decades, Dynare (Juillard, 1994, Collard and Juillard, 2001,
Adjemian et al., 2024) has become an indispensable tool for researchers and policymakers
in macroeconomics and beyond. Its guiding principle, “write your model almost as you would
on paper, and Dynare will take care of the rest!”, offers a user-friendly approach that has led to
widespread adoption in academic and policy circles alike.

Dynare’s intuitive framework and local solution methods have transformed the specifica-
tion and analysis of dynamic stochastic models in economics. Yet, these methods struggle
with problems involving substantial heterogeneity and non-linearities that demand global
solutions,2 such as those with financial frictions, the zero lower bound, rare disasters, and
models with many agents (e.g., Krueger and Kubler, 2004, Brumm et al., 2015a, Fernández-
Villaverde et al., 2015, Azinovic and Žemlička, 2023), or tipping points in climate-economic
models (e.g., Cai and Lontzek, 2019, Kotlikoff et al., 2021). While perturbation methods are
confined to a neighborhood of the steady state, naive global solution methods, such as basic
Cartesian grid-based approaches requiring 𝑀𝑑 points for 𝑀 points per dimension, face expo-
nential computational costs as dimensionality 𝑑 grows. This challenge, driven, for instance, by
the heterogeneity in a model, is commonly known as the curse of dimensionality (Bellman, 1961).
Goal and Contribution of this Article. Recognizing the limitations of local solution methods,
this paper demonstrates that global solutions for economic models with substantial heterogene-
ity and frictions can be computed both accurately and fast by extending the Dynare environ-
ment—specifically, its .mod-files—to accommodate contemporary global solution techniques.
We illustrate these enhancements by integrating two widely used and well-studied meth-
ods—(adaptive) sparse grids (SGs3; e.g., Brumm and Scheidegger, 2017) and high-dimensional
model representation (HDMR; e.g., Eftekhari et al., 2017)—and by showcasing their generic
applicability and scalability through the solution of an international real business cycle (IRBC)
model (Haan et al., 2011, Kollmann et al., 2011) via the time iteration algorithm (Coleman,
1990).4 The IRBC model is an ideal test case because its dimensionality grows linearly with
the number of countries, making it well-suited for testing high-dimensional global solution
methods.
General Problem Formulation and Global Solution Methods. This article examines dy-
namic economic models frequently characterized by recursive equilibria (Ljungqvist and Sargent,
2004). In these models, a (potentially high-dimensional) state variable x ∈ 𝑋 ⊂ R𝑑 represents
the current state of the economy, with 𝑑 indicating the dimensionality of the state space. The
evolution of the model is governed by a time-invariant equilibrium function 𝑓 : 𝑋 → 𝑌 ⊂ R𝑚 ,
which is determined by solving a functional equation of the form

ℰ( 𝑓 ) = 0, (1)
2We adopt the nomenclature from Brumm and Scheidegger (2017), referring to a “global solution” as one

computed using equilibrium conditions at numerous points throughout the state space of a dynamic model, as
opposed to a “local solution” which relies on a local approximation around the model’s steady state, as achieved
through perturbation methods.

3We use the term SGs interchangeably for both “regular” sparse grids with piecewise linear basis functions and
“adaptive” sparse grids with linear basis functions (cf. Section 4.1).

4Two main challenges arise when applying time iteration to large-scale dynamic stochastic models: (i) each
iteration step requires the global approximation of a high-dimensional, multivariate function, and (ii) each point
in the chosen approximation scheme entails solving a system of non-linear equations. Together, these issues can
significantly prolong the time to solution, underscoring the need for an efficient and highly scalable implementation
of the algorithm.
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Overview of Numerical Solution Methods for Dynamic Models.

Solution Methods
for dynamic economic models

Local Solutions
e.g., 2𝑛𝑑 -order perturbation as in

Schmitt-Grohé and Uribe (2004),

or heterogeneous agents as in

Reiter (2009), Auclert et al. (2021)

Global Solutions
adheres to equilibrium conditions

over the entire state space

Grid-Free Methods
e.g., parameterized expectations algorithm

as in Den Haan and Marcet (1990)

HDMR
e.g., combining Gaussian Processes

with HDMR as in Ren et al. (2022)

Grid-Based Methods
based on grid of points

covering state space

Tensor-Product Grids
e.g., standard projection

methods as in Judd (1998)

Sparse Grids
grid grows less than

exponentially in dimension

Local Sparse Grids
e.g., multi-linear hierarchical basis

as in Brumm and Scheidegger (2017)

Global Sparse Grids
e.g., Lagrange-polynomial basis

as in Judd et al. (2014)

DDSG
e.g., combining SGs with HDMR

as in Eftekhari and Scheidegger (2022)

Figure 1: Taxonomy of solution methods for dynamic economic models, classified into sev-
eral categories. Note that HDMR can be utilized in both grid-based and grid-free contexts.
However, in this article, we focus exclusively on grid-based approaches, as the combination of
SGs with HDMR (denoted as dimension-decomposed sparse grids (DDSG); cf. Section 4.2) offers
significant numerical advantages.

where ℰ may, for example, denote a Bellman equation in a discrete-time framework or the
Hamilton-Jacobi-Bellman (HJB) equation in continuous time. Alternatively, ℰ might capture
the first-order equilibrium conditions in a discrete-time setting, with 𝑓 representing a (possibly
multi-dimensional) policy function, which is the primary focus of this article.

In each of these settings, the curse of dimensionality becomes an issue when the state space 𝑋

is moderately high-dimensional and a global solution is required, particularly in the presence
of significant non-linearities. In contrast to local solutions, which depend on equilibrium
conditions and their derivatives at a specific point, global approaches demand that these
conditions hold throughout the entire state space. Consequently, researchers have to turn to
grid-based and grid-free approximation methods that mitigate the curse of dimensionality.
Figure 1 provides a structured, albeit non-exhaustive, taxonomy of solution methods used in
dynamic economic models, adapted and expanded from Brumm et al. (2022).

Grid-free methods have been proposed, notably by Den Haan and Marcet (1990), and have
recently gained traction through advancements in machine learning.5 Unlike many contem-

5See, for instance, Duffy and McNelis, 2001, Norets, 2012, Renner and Scheidegger, 2018, Maliar et al., 2021,
Azinovic et al., 2022, Fernández-Villaverde et al., 2023, Han et al., 2021, Friedl et al., 2023, Gaegauf et al., 2023,
Nuño et al., 2024, Valaitis and Villa, 2024, Duarte et al., 2024, Kase et al., 2022, Kübler et al., 2025, Payne et al., 2024,
and Chen et al., 2025. For a recent review of deep learning applications in economics, refer to Fernández-Villaverde
et al. (2024).

3



porary machine learning approaches, which often require extensive ad-hoc hyperparameter
tuning, SGs benefit from well-understood convergence properties. SGs enable researchers
to scale up models that are numerically formulated on a grid to higher dimensions without
necessitating a complete overhaul of the solution technique. Additionally, they can be rela-
tively easily parallelized, potentially reducing computation time significantly (Brumm et al.,
2015b). Thus, SGs provide a straightforward means to augment current modeling and solution
frameworks, thereby broadening the spectrum of addressable research questions. We have
thus opted to initially employ SGs (in combination with HDRM) to extend Dynare beyond
perturbation-based methods before transitioning to more recent, albeit currently less stable,
global solution techniques.
Adaptive Sparse Grids. SG methods offer a highly efficient and structured approach to the
computational challenges of high-dimensional state spaces in dynamic economic models, that
is, to approximate non-linear, high-dimensional (policy) functions. By extending univariate
interpolation formulas to the multivariate case through linear combinations of tensor products,
as detailed in various techniques like the Smolyak algorithm, classical SG methods, combination
techniques, and dimension- or spatially-adaptive methods (e.g., Bungartz and Griebel, 2004,
and references therein), SGs alleviate the curse of dimensionality. Specifically, SG methods
reduce the exponential growth of grid points with increasing dimensionality 𝑑, from𝒪(𝑀𝑑) to
𝒪(𝑀 ·(log 𝑀)𝑑−1), while maintaining nearly the same accuracy for sufficiently smooth functions
(see Figure 2). This approach cuts grid points by several orders of magnitude compared to
full Cartesian tensor-product grids, significantly mitigating the computational burden while
marginally increasing interpolation errors. The primary distinction among SG techniques lies
in their use of either local or global basis functions, which we categorize as local sparse grids
and global sparse grids, respectively. Local SGs (LSG), utilizing hierarchical, multi-linear basis
functions, are particularly effective for non-smooth functions exhibiting localized irregularities
like kinks. On the other hand, Global SGs (GSG), often based on Lagrange characteristic
polynomials (commonly known as the Smolyak method in economics), excel at approximating
smooth functions (cf. Figure 1). In this article, we focus strictly on LSGs; for GSGs, please refer
to the review by Brumm et al. (2022).
The Role of HDMR: When Sparse Grids Are Not Sufficient. SGs are highly effective for ap-
proximating functions in moderately high-dimensional spaces (e.g., when 𝑑 < 20). However,
their computational cost can become prohibitive as either the dimensionality or the complex-
ity (i.e., the degree of non-linearity) of the underlying functions increases. For example, in
highly non-linear dynamic economic models with many state variables, a high a priori grid
resolution (i.e., refinement ℓ ) produces an explosive number of grid points (see Figure 2).
Moreover, numerical operations on SG data structures may become prohibitively expensive in
high-dimensional settings (Muraraşu et al., 2012). HDMR addresses this limitation by decom-
posing the target function into a sum of lower-dimensional components, each of which can be
approximated very efficiently (see, e.g., Ma and Zabaras, 2010, Yang et al., 2012, and references
therein). Evaluating the combined sum of these component functions is considerably less com-
putationally demanding than evaluating a full SG in high-dimensional settings. When HDMR
is combined with SGs, the resulting approach is often called dimension-decomposed sparse grids
(DDSG; cf. Figure 1). This integration substantially reduces computational load and memory
requirements while preserving approximation accuracy. As a result, DDSG is particularly
well-suited for high-dimensional economic models characterized by significant heterogeneity
and complex non-linearities, provided that a (possibly latent) additively separable structure
exists and can be detected computationally.
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Figure 2: Left Panel: Number of grid points in a full Cartesian grid (FG) of dimensionality
𝑑 with increasing grid resolution, denoted by the refinement level ℓ . In SGs, ℓ dictates the
grid’s resolution, producing approximately 𝑀 ∝ 2ℓ points per dimension, where a higher ℓ

resolves finer features as the spacing between points shrinks to ℎ ∝ 2−ℓ , resulting in a total
of 𝑀 ∝ 2ℓ ·𝑑 grid points across all dimensions. Right Panel: Number of grid points in an SG
of increasing dimensionality. Notably, even a 200-dimensional SG with resolution ℓ = 6 has
orders of magnitude fewer points than an 8-dimensional FG at the same resolution level (cf.
Section 4.1 below).

Preview of Results. We demonstrate that the SG approach for computing global solutions
scales up to at least 16-dimensional IRBC models6 and exhibits subexponential increases in run-
time. Even when targeting a high level of accuracy for global solutions, our computation times
remain relatively short on a standard laptop: 8-dimensional models are solved in seconds,
while 16-dimensional ones require only about half an hour. Moreover, initializing the time
iteration algorithm with Dynare’s perturbation solution—rather than a naive guess—reduces
convergence time by up to 20 times, highlighting the practical viability of the SG method for
high-dimensional models. In addition, our DDSG approach, which builds upon standard SG
methods, can provide additional efficiency gains, as demonstrated in the context of the IRBC
model with its latent additively separable structure. Although the DDSG method incurs a
modest overhead in low-dimensional settings, this cost diminishes rapidly with increasing
dimensions; runtimes break even by eight dimensions, and at 16 dimensions, a single DDSG
timestep is more than 13 times faster than its SG counterpart. These efficiency gains, coupled
with an up to 80 times speedup achieved by employing Dynare’s initialization within the DDSG
framework, make our approach a powerful tool for tackling complex, high-dimensional eco-
nomic models in which latent additively separable structures are present. As we demonstrate
in our numerical experiments, the DDSG approach also exhibits subexponential increases in
runtime, thereby enabling the computation of global solutions for models with at least 100 di-
mensions on a standard laptop within hours, whereas models with fewer than 20 dimensions
exhibit runtimes of only seconds to minutes.
Organization of the Article. The remainder of this paper is structured as follows. Section 2
offers a brief overview of related literature. Section 3 then formally characterizes the models
we aim to solve via a canonical time iteration algorithm. Section 4 reviews the mathematical
underpinnings of SGs and HDMR, which serve to approximate and interpolate policy functions

6Recall that while we focus on an IRBC model here, the approach is broadly applicable to high-dimensional
dynamic stochastic models. The IRBC model simply serves as a convenient test bed, because one can easily adjust
the number of countries (and thus the number of states) to control the computational complexity.
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within the time iteration algorithm. Section 5 details the required modifications to Dynare’s
.mod files to accommodate the global solution methods proposed. Section 6 then discusses
illustrative performance results, and finally, Section 7 concludes. Furthermore, we provide
supplementary code examples demonstrating our developments, available at https://nvls.
co/Dynare/GlobalMethods/SparseGrids.

2 Related Literature

Building on Juillard, 1994, Collard and Juillard, 2001 and Adjemian et al., 2024, this article aims
to extend the Dynare framework—currently relying on various local perturbation methods—by
incorporating two particular types of global solution methods, namely SGs and HDMR. These
methods have become an important and widely used tool in economics and finance for solving
high-dimensional models, and are broadly applicable in both discrete and continuous time
frameworks, as summarized in the recent review by Brumm et al. (2022).7 In what follows, we
present a brief, though by no means exhaustive, overview of the diverse applications within
these fields.

The introduction of global sparse grids (GSGs; cf. Figure 1), specifically the Smolyak
sparse grids, in economics was pioneered by Krueger and Kubler (2004, 2006), focusing on
discrete-time overlapping generations (OLG) models. Fernández-Villaverde et al. (2015) fur-
ther utilized these GSGs to explore non-linear dynamics in a New Keynesian model constrained
by a zero lower bound on nominal interest rates. Enhancements to the Smolyak method for
better economic model performance were made by Judd et al. (2014). Local sparse grids (LSGs;
cf. Figure 1) entered economic analysis through the work of Brumm and Scheidegger (2017),
who applied these grids to IRBC models with irreversible investment and menu-cost models.
Moreover, they introduced adaptivity, which adds a second layer of sparsity, as grid points
are added only where they are most needed. Brumm et al. (2017) and Brumm and Hußmann
(2024) employed LSGs for solving calibrated OLG models with aggregate shocks, while Usui
(2019) used them to analyze rare natural disasters and adaptation in a dynamic stochastic
economy. Recent developments include the introduction of continuous-time adaptive LSG
methods in macroeconomics by Garcke and Ruttscheidt (2019), particularly for heterogeneous
agent models. Schaab (2020) utilized LSGs to solve HJB type equations, examining the interplay
between micro and macro uncertainties in a heterogeneous agent New Keynesian model, ac-
counting for aggregate risk, counter-cyclical unemployment, and monetary policy constraints.
In the realm of finance, LSGs have been applied both in discrete and continuous time to tackle
high-dimensional option-pricing problems, as demonstrated by Reisinger and Wittum (2007),
Bungartz et al. (2012), Scheidegger and Treccani (2018), and to address dynamic portfolio
choice models with transaction costs as per Schober et al. (2021). Further financial applications
include the integration of likelihood functions on GSGs by Heiss and Winschel (2008), the
embedding of GSGs in Bayesian estimation frameworks by Winschel and Krätzig (2010), and
the application of LSGs in the context of the generalized method of moments by Gilch et al.
(2021). Young and Ratto (2011) have used ideas from the HDRM literature in the context
of splines to estimate linear models, whereas Eftekhari and Scheidegger (2022) combined SGs
with HDMR to solve dynamic stochastic models containing up to 300 continuous states. Finally,
numerous high-performance, user-friendly open-source SG implementations are available in
various programming languages. Among the most popular are SG++8, the sparse grids Matlab

7For an extensive review of numerical techniques for dynamic models, see the handbook chapters by Maliar and
Maliar, 2014 and Cai and Judd, 2014.

8see https://sgpp.sparsegrids.org
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kit9, spinterp10, and TASMANIAN11. In our numerical experiments within Dynare, we utilize
TASMANIAN, as it is actively developed and maintained by Oak Ridge National Laboratory.

3 Solving Dynamic Models with Sparse Grids and HDMR

To demonstrate the capabilities of embedding SGs and HDMR within Dynare to compute
global solutions to a very broad range of discrete-time dynamic stochastic models, we begin by
formally characterizing the class of models we aim to solve. Section 3.1 presents the general
structure common to many infinite-horizon, discrete-time dynamic stochastic economic models.
Next, Section 3.2 introduces a specific benchmark example, namely the IRBC model (see, e.g.,
Haan et al., 2011). Finally, in Section 3.3, we demonstrate how to iteratively compute global
solutions for such dynamic models via time iteration, using the IRBC model as a guiding
example.

3.1 Abstract Model Formulation

Let x𝑡 ∈ 𝑋 ⊂ R𝑑 denote the state of the economy at time 𝑡 ∈ N. We define the actions of all
agents in the economy through a policy function 𝑝 : 𝑋 → 𝑌, where𝑌 represents the space of all
possible policies. The evolution of the state x𝑡 from period 𝑡 to 𝑡 + 1 follows the state transition

x𝑡+1 ∼ 𝒟(· | x𝑡 , 𝑝(x𝑡)), (2)

where the distribution𝒟(·) is model-specific. The optimal policy function 𝑝(·) is not known a
priori and must satisfy the period-to-period equilibrium conditions 𝐸(·). Specifically, the policy
is time-invariant, so

E
[
𝐸
(
x𝑡 , x𝑡+1 , 𝑝(x𝑡), 𝑝(x𝑡+1)

) �� x𝑡 , 𝑝(x𝑡)] = 0 ∀𝑡 , (3)

where E[·] is the expectation taken over the distribution in expression (2).
This time-invariant policy 𝑝(·) can be determined via time iteration, by iterating directly on

condition (3). The time iteration algorithm (Coleman, 1990) computes a recursive equilibrium
of a dynamic economic model by starting with an initial guess for the policy function and
iteratively refining it based on the model’s first-order conditions (e.g., Judd, 1998, Section 17.8).

The Need for Global Solution Methods. In many economic models, the equilibrium condi-
tions 𝐸 exhibit substantial non-linearity due to concave utility and production functions or large
shocks; moreover, (financial) frictions often imply non-differentiability. As a result, the optimal
policy satisfying Equation (3) is generally non-linear and not necessarily smooth, necessitat-
ing function-approximation techniques suited to (high-dimensional) non-linear environments.
Global solution methods, such as SGs and HDRM, are thus preferred over perturbation ap-
proaches, like those in the standard Dynare implementation (Adjemian et al., 2024).

3.2 International Real Business Cycle Model

The IRBC model is a widely used benchmark for studying methods that solve high-dimensional
dynamic stochastic models, because its dimensionality scales linearly with the number of

9see https://sites.google.com/view/sparse-grids-kit
10see https://people.math.sc.edu/Burkardt/m_src/spinterp/spinterp.html
11see https://tasmanian.ornl.gov
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countries. In the following, we present the equations of the IRBC model, which formally
correspond to the abstract formulation given in Equation (3). A detailed discussion of the
model itself is beyond the scope of this paper; the interested reader is referred to Haan et al.,
2011 and Brumm and Scheidegger, 2017 for derivations. Here, we focus on the explicit set of
non-linear equations to be solved at many points in the state space in order to construct the
optimal policy function 𝑝(·).

The IRBC model is dynamic and stochastic with a (𝑑 = 2𝑁)-dimensional state space, where
𝑁 ∈ N+ is the number of countries. The state variables are

x𝑡 =
(
𝑎1
𝑡 , . . . , 𝑎

𝑁
𝑡 , 𝑘1

𝑡−1 , . . . , 𝑘
𝑁
𝑡−1

)
∈ R2𝑁 , (4)

where 𝑎𝑛𝑡 and 𝑘𝑛𝑡 represent the productivity and the end-of-period capital stock of country
𝑛 ⩽ 𝑁 , respectively. The policy function 𝑝 : R2𝑁 → R𝑁+1 maps the current state x𝑡 into the
next period,

𝑝(x𝑡) =
(
𝑘1
𝑡 , . . . , 𝑘

𝑁
𝑡 , 𝜆𝑡

)
, (5)

where 𝜆𝑡 is the multiplier for the aggregate resource constraint. For optimality, the IRBC policy
must satisfy the following 𝑁 + 1 non-linear equations:

𝜆𝑡

𝜕𝑞𝑛𝑡
(
𝑘𝑛
𝑡−1 , 𝑘

𝑛
𝑡

)
𝜕𝑘𝑛𝑡

− 𝛽E𝑡

[
𝜆𝑡+1

𝜕
(
𝑦𝑛(𝑎𝑛

𝑡+1 , 𝑘
𝑛
𝑡 ) − 𝑞𝑛(𝑘𝑛𝑡 , 𝑘𝑛𝑡+1)

)
𝜕𝑘𝑛𝑡

]
= 0 ∀𝑛, (6)

𝑁∑
𝑛=1

𝑦𝑛
(
𝑎𝑛𝑡 , 𝑘

𝑛
𝑡−1

)
−

(
𝜆𝑡

𝜏𝑛

)−𝛾𝑛

− 𝑞𝑛
(
𝑘𝑛𝑡−1 , 𝑘

𝑛
𝑡

)
= 0.

The parameters 𝜏𝑛 and 𝛾𝑛 are model-specific, while 𝑦𝑛(·) and 𝑞𝑛(·) denote the production and
convex adjustment-cost functions, respectively. The complete parameterization of the model is
given in Brumm and Scheidegger (2017), Table 2.

3.3 Time Iteration

We next describe how the time iteration algorithm (Coleman, 1990) is implemented in Dynare
to iteratively solve dynamic models expressed abstractly as expression (3), such as the IRBC
model introduced in Section 3.2. Algorithm 1 illustrates how to solve the non-linear system
(6) using an interpolation/approximation, sloppily denoted as ℐ , of the previous policy guess,
denoted by ℐ 𝑝0(·). Specifically, we approximate the terms

(
𝑘1
𝑡+2 , . . . , 𝑘

𝑁
𝑡+2 ,𝜆𝑡+1

)
by ℐ 𝑝0

(
x𝑡+1

)
and

subsequently solve for the 𝑁 + 1 unknowns using a non-linear solver, such as IPOPT (Waechter
and Biegler, 2006). Starting with an initial policy guess ℐ 𝑝guess, which may be obtained from
a linearized Dynare solution, the procedure iteratively refines the solution until it satisfies
a specified tolerance, tol, measured, for instance, as mean squared error (cf. Sections 6.1
and 6.2 below). In each iteration, a high-dimensional, non-linear policy is updated using an
appropriate approximation scheme, such as SGs or HDMR (as discussed in this paper). For
further implementation details, see Brumm and Scheidegger (2017).

4 Numerical Function Approximation

Dynamic stochastic models, solved via time iteration (see Sections 3.2 and 3.3), necessitate
repeated approximations and interpolations of high-dimensional, non-linear functions. In this
section, we demonstrate that these tasks can be efficiently addressed using SGs or by combining
SGs with HDMR, an approach we term, as mentioned before, dimension-decomposed sparse grids
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Algorithm 1 Time Iteration Algorithm.
Require: ℐ 𝑝guess , tol

1: ℐ 𝑝 ← ℐ 𝑝guess
2: repeat
3: ℐ 𝑝0 ← ℐ 𝑝
4: construct ℐ 𝑝 by solving Eq. (5) given ℐ 𝑝0
5: until ∥ℐ 𝑝 − ℐ 𝑝0∥ < tol

Figure 3: Left Panel: Hierarchical basis functions at refinement levels ℓ = 1 (solid black),
ℓ = 2 (dashed blue), and ℓ = 3 (dash-dotted red). Right Panel: A two-dimensional SG with
corresponding refinement levels and colors.

(DDSG). Section 4.1 provides a concise overview of SG techniques (e.g., Bungartz and Griebel,
2004, Pflüger, 2010), Section 4.2 reviews HDMR and DDSG, and Section 4.3 presents analytical
examples to build intuition. Throughout, we adopt the notation established in Eftekhari et al.
(2017).

4.1 Adaptive Sparse Grids

We aim to approximate the policy function, where each policy is represented as 𝑓 : Ω → R,
with Ω = R𝑑 and x ⊂ Ω rescaled to the unit domain [0, 1]𝑑. In our case 𝑑 the number of
continuous state variables in the economic model of interest, a potentially large number.12 In
one dimension, the unit domain [0, 1] can be discretized with grid spacing ℎ𝑙 = 2−𝑙 , grid points
at 𝑥𝑙 ,𝑖 = 𝑖 · ℎ𝑙 , where 𝑖 ∈ {1, . . . , 2𝑙} and refinement level 𝑙 ∈ N+. The univariate basis functions
for this discretization are defined as

𝜙𝑙 ,𝑖(𝑥) = max
(
1 − 1

ℎ𝑙

��𝑥 − 𝑥𝑙 ,𝑖
��, 0

)
, (7)

which have support [𝑥𝑙 ,𝑖 − ℎ𝑙 , 𝑥𝑙 ,𝑖 + ℎ𝑙]. In the left panel of Figure 3, we illustrate a one-
dimensional hierarchical piecewise linear basis function. We extended the basis function
to a 𝑑-dimensional domain by first introducing the multi-indices for the refinement level
l = (𝑙1 , . . . , 𝑙𝑑) ∈ N𝑑

+ and grid index i = (𝑖1 , . . . , 𝑖𝑑) with the corresponding grid point xl,i =

12For illustration and notational brevity, we assume zero boundary conditions. For a discretization scheme with
nonzero boundary conditions—such as the Clenshaw-Curtis sparse grid setting employed in all our numerical
experiments, see Stoyanov (2015) and Pflüger (2010).
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(𝑥𝑙1 ,𝑖1 , . . . , 𝑥𝑙𝑑 ,𝑖𝑑 ). The 𝑑-dimensional basis functions are defined as

𝜙l,i(x) =
𝑑∏
𝑗=1

𝜙𝑙𝑗 ,𝑖 𝑗 (𝑥 𝑗). (8)

We define the hierarchical index sets Il, and the corresponding hierarchical subspace 𝑊l as

Il =
{
i : 0 < 𝑖 𝑗 < 2𝑙𝑗 , 𝑖 𝑗 odd, 1 ⩽ 𝑗 ⩽ 𝑑

}
, and 𝑊l = span

{
𝜙l,i : i ∈ Il

}
. (9)

The restriction to odd indices 𝑖 𝑗 ensures that the supports of the basis functions are disjoint and
collectively cover [0, 1]𝑑. For the space of piecewise linear functions,

𝑉ℓ =

⊕
∥l∥∞⩽ℓ

𝑊l , (10)

we can construct a corresponding equidistant Cartesian grid, also called a full grid, with 𝑀ℓ = 2ℓ
number of grid points in each dimension, where ℓ denotes the maximum refinement level.

Although the 𝐿2 interpolation error is of order 𝒪(𝑀−2
ℓ
), the total number of grid points is

𝒪(𝑀𝑑
ℓ
), effectively rendering this approach impractical for high-dimensional functions. SG mit-

igates the curse of dimensionality by retaining only the most significant hierarchical subspaces.
Formally, the SG space is defined as

𝑉SG
ℓ =

⊕
∥l∥1≤ℓ+𝑑−1

𝑊l. (11)

The SG interpolation of 𝑓 at a point x with a maximum refinement level ℓ is defined as

ℐℓ 𝑓 (x) :=
∑

∥l∥1≤ℓ+𝑑−1

∑
i∈Il

𝛼l,i 𝜙l,i(x), (12)

where 𝛼l,i ∈ R (hierarchical surpluses). In the right panel of Figure 3, we illustrate the grid
points for a two-dimensional SG. For functions with bounded mixed second derivatives, the
SG interpolation error is of the order 𝒪(𝑀−2

ℓ
(log 𝑀ℓ )𝑑−1), while the number of grid points is

𝒪(𝑀ℓ (log 𝑀ℓ )𝑑−1), substantially less grid points than the full grid in high dimensions. For
further details on SGs, including the error analysis and the computation of hierarchical sur-
pluses 𝛼l,i, we refer the reader to Bungartz and Griebel (2004) and references therein. Finally,
quadrature on SGs, denoted as

𝒬ℓ 𝑓 =
∑

∥l∥1≤ℓ+𝑑−1

∑
i∈Il

𝛼l,i

∫
𝜙l,i(x) 𝑑x, (13)

can be efficiently evaluated by integrating the basis functions defined in Equation (8).
If the function to be approximated has sharp local features, steep gradients, or non-

differentiabilities—for example, in economic models with occasionally binding constraints—
the assumed condition of bounded second-order mixed derivatives is not satisfied. As a result,
significantly higher SG refinement levels (and thus more grid points) may be required, limit-
ing the applicability of SG in many high-dimensional problems of interest. In such scenarios,
an adaptive refinement procedure can be employed to preserve efficiency (e.g., Pflüger, 2010,
Brumm and Scheidegger, 2017). In this adaptive approach, one monitors the magnitude of each
hierarchical surplus 𝛼i,l, which indicates the local irregularity of the function at xi,l. Let 𝜖𝛾 ∈ R+
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be a predefined refinement threshold, and define a refinement criterion 𝑔. If 𝑔(𝛼i,l) ⩽ 𝜖𝛾, then
the point xi,l is considered insignificant and no further refinement is performed at that location.
Due to the hierarchical structure of the grid, excluding xi,l automatically excludes any descen-
dant points at higher refinement levels. In many practical applications, the commonly used
refinement criterion is

𝑔
(
𝛼i,l

)
:=

��𝛼i,l
��, (14)

although alternative criteria may also be applied (e.g., Stoyanov, 2015).
SGs are, as mentioned above, highly effective for approximating moderately high-dimensional

functions (say, 𝑑 < 20); however, they can become computationally prohibitive as dimension-
ality or complexity increases (cf. Brumm and Scheidegger (2017)). To address this limitation,
we now turn our attention to HDMR and DDSG.

4.2 Dimensional Decomposition

In this section, we follow the approach of Hooker (2007) and Rabitz and Aliş (1999) to illustrate
the fundamental steps for constructing a dimensional decomposition (DD). As in the previous
sections, we consider a scalar-valued function 𝑓 (x), where x ∈ [0, 1]𝑑.13 Denote u ⊆ 𝒮 =

{1, 2, . . . , 𝑑} as a component index, and 𝑓u(xu) as a component function, where xu is a vector that
consists of the values 𝑥𝑖 for 𝑖 ∈ u. The function 𝑓 (x) can be expressed as the expansion

𝑓 (x) =
∑
u⊆𝒮

𝑓u(xu). (15)

This representation of the function is referred to as HDMR. The terms in the summation are
classified by the expansion order 𝑘 := |u|, which corresponds to the dimension of the input vector
xu. Expressed explicitly, the function can be decomposed as

𝑓 (x) = 𝑓∅ +
∑

1⩽𝑖⩽𝑑

𝑓𝑖(𝑥𝑖) +
∑

1⩽𝑖< 𝑗⩽𝑑

𝑓𝑖 , 𝑗(𝑥𝑖 , 𝑥 𝑗) + . . . + 𝑓1,2,...,𝑑(𝑥1 , 𝑥2 , . . . , 𝑥𝑑). (16)

Here, 𝑓∅ is a constant term corresponding to the zeroth-order contribution; the functions 𝑓𝑖 ,
with 1 ≤ 𝑖 ≤ 𝑑, are univariate (first-order) contributions; the functions 𝑓𝑖 , 𝑗 represent bivariate
(second-order) contributions; and so forth, culminating in the 𝑑th-order contribution 𝑓1,2,...,𝑑.
In its complete form, this decomposition is exact, since the final term captures all interactions
among the input variables. The principal advantage of the DD approach becomes evident
when the high-dimensional function 𝑓 can be well approximated by truncating the expansion
in expression (15) at a maximum order 𝒦 ≪ 𝑑.

Among the various formulations of HDMR, cut-HDMR and ANOVA-HDMR are particularly
prominent (e.g., Rabitz et al., 1999 and Li et al., 2001).14 We focus specifically on cut-HDMR, as
it more closely aligns with the goals of our application. In contrast to ANOVA-HDMR, which
requires high-dimensional numerical integration, cut-HDMR relies solely on direct function
evaluations (see also Eftekhari and Scheidegger (2022)).

Let 𝑤(x) = ∏𝑑
𝑖=1 𝑤𝑖(𝑥𝑖) be a product measure, with 𝑤𝑖(𝑥𝑖) having a unit volume. By sequen-

tially ascending through the expansion orders, starting from the zeroth order, the optimally
13The presented method is not limited to scalar-valued functions but can be directly extended to vector-valued

functions. The scalar formulation is used solely for notational simplicity.
14For a comprehensive discussion of alternative cut-HDMR variants, including RS-HDMR, mp-cut-HDMR,

Multicut-HDMR, and lp-RS-HDMR, see Li and Rabitz (2012).
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Figure 4: The number of DD component functions, both incremental and cumulative, as a
function of expansion order for an 8-dimensional (left panel) and a 16-dimensional function
(right panel). The number of component functions increases significantly with both expansion
order and dimensionality.

and uniquely defined HDMR component function

𝑓u(xu) =argmin
𝑔u

∫ (∑
u⊆𝒮

𝑔u(xu) − 𝑓 (x)
)2

𝑤(x)𝑑x, (17)

subject to
∫

𝑔u(xu)𝑤𝑖(x𝑖)𝑑𝑥𝑖 = 0, ∀𝑖 ∈ u,

will only be dependent on lower-order component functions 𝑓v(xx) for v ⊂ u. This is particularly
important because the contrary would eliminate any reduction in dimensionality. This attribute
is a result of the orthogonality condition imposed in Equation (17) (Rabitz and Aliş, 1999,
Hooker, 2007). The cut-HDMR component functions are defined using the Dirac measure,

𝑤(x) 𝑑x =

𝑑∏
𝑖=1

𝛿(𝑥𝑖 − 𝑥̄𝑖) 𝑑𝑥𝑖 , (18)

where 𝛿(·) denotes the Dirac delta function, and x̄ = (𝑥̄1 , . . . , 𝑥̄𝑑) is a reference point known as
the anchor point. As shown by Sobol (2003), a suitable anchor point should satisfy

x̄ ≈ argmin
z
∥ 𝑓 (z) − E[ 𝑓 (x)]∥1 , (19)

and can be selected by sampling x̄ so that 𝑓 (x̄) is close to the mean of the function. Evaluating
expression (17), the cut-HDMR component functions are defined as

𝑓u(xu) =
∑
v⊆u
(−1)|u|−|v| 𝑓 (x)|x=x̄\xv , with 𝑓∅ = 𝑓 (x̄). (20)

We use the notation x = x̄\xv to refer to assigning x the values of x̄ but excluding the indices of
v. For example, given x = (𝑥1 , 𝑥2 , 𝑥3), then x̄\x1,2 = (𝑥1 , 𝑥2 , 𝑥̄3).
Performing the full expansion in expression (15) up to order 𝑘 = 𝑑 is computationally infeasible
for problems of nontrivial dimensionality, as it simply reconstructs the original 𝑑-dimensional
function, thereby negating the intended efficiency gains from dimensional reduction. More-
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Figure 5: Visualization of the component functions summation in Equation (15) of a four-
dimensional function with active dimension criteria, where the component index u = {1, 2} is
deemed insignificant. For clarity, repeated cells are omitted. All component functions that are
supersets of u = {1, 2} are excluded from the summation (shown in gray).

over, the number of component functions increases combinatorially with the expansion order
𝑘:

𝑘∑
𝑗=0

𝑑!
(𝑑 − 𝑗)!𝑗! , (21)

which poses significant computational challenges even for moderately sized problems (e.g.,
8- or 16-dimensional), as illustrated in Figure 4. Therefore, truncating the expansion to a
maximum order 𝒦 ≪ 𝑑 is imperative; moreover, the optimal selection of 𝒦 is inherently
problem-dependent.

Truncating the HDMR Expansion. Two adaptive criteria have proven particularly effective
for truncating the expansion in Equation (15), especially in economic applications (Eftekhari
and Scheidegger, 2022). These criteria involve: (i) assessing the relative importance of individ-
ual component functions, and (ii) evaluating the incremental benefit of proceeding to higher
expansion orders.

The first criterion, termed active dimension selection, evaluates the significance of each com-
ponent function by comparing the norm of its integral to the norm of the cumulative integral
of all previously computed lower-order component functions. Component functions whose
integrals fall below a specified threshold are discarded, together with all supersets of their
corresponding indices (see Figure 5 for a visual representation). The second criterion, known
as the expansion criterion, examines convergence across expansion orders by quantifying the in-
cremental changes in the integral values of the component functions. Expansion is terminated
once these incremental changes fall below a predefined convergence threshold. Both criteria
exploit the hierarchical structure of the expansion, thereby enhancing computational efficiency
by reusing previously computed integrals.15

Dimensional Decomposition With Adaptive Sparse Grids. The abstract formulation of DD
provided above has been described independently of the numerical methods for interpolation
and quadrature. However, practical implementation requires efficient numerical schemes,

15Starting from lower-order terms, numerical integration is performed in lower-dimensional spaces, thus miti-
gating the computational challenges associated with high-dimensional integration.
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Figure 6: Interpolation error for SG and DDSG at different maximum expansion orders 𝒦 for
the test function given in Equation (23), with coefficients (left panel) 𝑐 = 1 and (right panel)
𝑐 = 3. The approximation error is measured as the relative average error over 1, 000 samples of
x ∈ [0, 1]𝑑, where 𝑑 = 20.

particularly at higher DD expansion orders, due to the curse of dimensionality. SGs are
particularly well suited for numerical methods for DD because of two key attributes: (i) SGs
are effective in approximating high-dimensional functions with localized features, and (ii)
their capability for efficient numerical integration (see Equation (15)). This combined approach
is referred to as DDSG. Following the previously established exemplar of the 𝑑-dimensional
function 𝑓 , the DDSG function is expressed as

𝑓 (x) ≈
∑
u⊆𝒮
|u|⩽𝒦

∑
v⊆u
(−1)|u|−|v|ℐℓ 𝑓 (x)|x=x̄\xv , (22)

≈
∑
u⊆𝒮
|u|⩽𝒦

∑
v⊆u
(−1)|u|−|v|

∑
∥k∥1≤ℓ+𝑑−1

∑
i∈Ik

𝛼i,k 𝜙i,k(x)|x=x̄\xv

which represents a nested summation over a series of |v|-dimensional (adaptive) SGs. The
DDSG-based quadrature procedure adopts a similar structure (Eftekhari and Scheidegger,
2022). Note that we impose a strict maximum expansion order, which can be effectively
combined with the adaptive criteria discussed above (e.g., active dimension selection and
convergence criteria).

4.3 Analytical Examples

In this section, we present an analytical example to highlight the potential efficiencies and
drawbacks of DDSG compared to SG. Specifically, we aim to demonstrate that, when a (latent)
additively separable structure exists, DDSG can enhance the efficiency of SG by orders of
magnitude, whereas in the absence of such a structure, SG outperforms DDSG.

We consider the following non-linear, analytical test function:

𝑓 (x) =
(

𝑑∑
𝑖=1

sin(𝑥𝑖)
) 𝑐

, (23)

where 𝑐 = {1, 2, . . .}. This function is additively separable, and DD provides an exact de-
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composition with expansion order 𝑟 = 𝑐. For any case where 𝒦 < 𝑐, the DDSG approach
introduces an approximation error that cannot be mitigated by increasing the refinement levels
of the SG (applied to the lower-dimensional component functions). In Figure 6, we compare
the approximations generated by SG and DDSG for a 20-dimensional example, evaluating the
average relative interpolation error using 1, 000 random samples over the domain x ∈ [0, 1]𝑑.
Each marker in the plots represents a refinement level, ranging from ℓ = 1, . . . , 5. In the left
panel of the figure the test function uses 𝑐 = 1, meaning that DDSG with expansion order𝒦 = 1
achieves the same interpolation error as SG but with substantially fewer grid points. In the
right panel of the figure the test function has 𝑐 = 3, where DDSG with expansion order 𝒦 = 1
performs poorly compared to SG, and the minimum error remains relatively high regardless
of the refinement level. Increasing the expansion order reduces the error but significantly
increases the number of grid points due to the growing number of component functions. Only
when DDSG has an expansion order of 𝒦 = 𝑐 = 3 does the decomposition become exact,
allowing it to achieve the same error as SG.

Notice that for this test function, a simple log-transform can effectively render the function
additively separable with a DD expansion order𝒦 = 1, regardless of the value of 𝑐; a technique
that could also be applied in the context of economic models. While this approach may
not be universally applicable, an appropriate transformation can significantly reduce DDSG
approximation errors for non-additively separable functions. Moreover, in real applications
where the function is unknown, the effective expansion criterion outlined in Section 4.2 can
be used to implicitly deduce the separability of the unknown function (see Eftekhari and
Scheidegger (2022) for more details).

5 Dynare Syntax

This section details the required modifications to Dynare’s .mod files to accommodate the
proposed generic global solution methods.16 Code Listing 5 presents the .mod file command
for Dynare that characterize the IRBC model (cf. Section 3.2), beginning with the specification of
variables shared across countries. The subsequent declaration of variables, shock innovations,
and parameters follows standard Dynare syntax.

We then leverage Dynare’s macro-language to programmatically specify country-specific
model variables, shocks, equations, and initial conditions. The macro-language extends
Dynare’s basic syntax by introducing conditionals, loops, display, and error directives, among
other commands.17 The macro-processor expands these commands in the .mod file, gener-
ating a fully specified version that Dynare can process using its standard workflow. Since
this macro expansion occurs as a pre-processing step, it ensures that the final file conforms to
standard Dynare syntax. This approach simplifies the creation of .mod files by automatically
handling repetitive variable definitions and equations, as demonstrated in the multi-country
model considered in this study.

In our implementation, the @#define command sets the macro-variable N, representing the
number of countries in the model. We then define country-specific variables and parameters
using a macro loop statement (@#for-@#endfor) combined with expression substitution, where
@{j} is replaced by the current value of the macro-variable j in the .mod file. Specifically, for
illustrative purposes, we fix the number of countries atN= 2. The country-specific variables then
include the capital levels (denoted by k_1 and k_2) and log-productivity levels (denoted by a_1

16Notice that our code developments were implemented in Julia (i.e., Dynare.jl). However, the model pars-
ing is independent of the programming language, so the tools developed can also be made available in Dynare
environments such as Matlab.

17More details on Dynare’s macro-language and macro-processor are available in Dynare’s manual.
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and a_2). Similarly, e_1 and e_2 represent the country-specific components of the productivity
innovations. The country-specific parameters comprise the utility function curvatures (gamma_1
and gamma_2) and the welfare weights (t_1 and t_2).

The model block also leverages the macro-language to programmatically declare country-
specific optimality conditions for investment in capital and productivity processes using macro
loop statements. In contrast to standard Dynare models—where exogenous variables (varexo)
represent pure stochastic innovations—our approach distinguishes between stochastic inno-
vations and shock-driven state variables. This distinction is made explicit in the [preamble]
block, which groups all equations governing the processes of exogenous variables. In our
setup, the productivity processes (a_1 and a_2) are classified as exogenous because their evo-
lution depends solely on their past values and stochastic innovations (e and e_j), unlike the
conventional Dynare approach in which only the innovations are exogenous and the full au-
toregressive process is treated as endogenous. The dedicated [preamble] block isolates the
exogenous dynamics, thereby enhancing computational efficiency, particularly in numerical
methods such as sparse grids. Moreover, our implementation requires that shock innovations
be set to 1, so users must manually scale the innovations in the [preamble] equations by
their respective standard errors. The shocks block then assigns the standard errors of country-
specific shock innovations using a macro loop. Finally, the initval block specifies initial values
for simulation or serves as initial guesses for non-linear solvers, with a macro loop setting the
values for the country-specific capital and log-productivity levels.

Thus far, declarations (variables, shocks, parameters, and model equations) largely adhere
to standard Dynare syntax, aside from a few modifications in the definition of exogenous
variables. The macro-language is employed primarily to automate and structure repetitive
components, thereby ensuring scalability as the number of countries increases. We further
exploit the ability of the .mod file to interpret native Julia code by incorporating the SG routines
sparsegridapproximation and DDSGapproximation.

We leverage the capability of the .mod file to interpret native Julia code by incorpo-
rating the SG routines sparsegridapproximation and DDSGapproximation. The function
sparsegridapproximation implements an adaptive sparse grid method that iteratively refines
the approximation grid to solve the model. Its accuracy and computational cost are primar-
ily determined by several key parameters. In particular, the parameter gridDepth sets the
initial grid depth, thereby influencing the number of interpolation points. SG refinements
are controlled by maxRef—which specifies the maximum number of refinement steps—and
by surplThreshold, which defines the surplus error threshold that triggers refinement. The
time iteration process employs a convergence criterion specified by tol_ti. Additionally, the
parameter polUpdateWeight regulates the update of the policy function during iterations by as-
signing a weight to the newly computed policy relative to the previous iteration. Lower values
of polUpdateWeight stabilize the updates, albeit at the potential cost of slower convergence.

The DDSGapproximation function extends the standard SG approach by employing the
DDSG method, which restricts interactions among state variables to alleviate the curse of dimen-
sionality. In addition to the parameters used insparsegridapproximation, DDSGapproximation
introduces k_max, which specifies the maximum order of interaction terms in the DDSG decom-
position. This parameter is pivotal in balancing computational efficiency with approximation
accuracy.

var lambda;
varexo e;
parameters kappa beta delta phi rho A sigE;

kappa = 0.36;
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beta = 0.99;
delta = 0.01;
phi = 0.5;
rho = 0.95;
sigE = 0.01;
A = (1 - beta*(1 - delta))/(kappa*beta);

a_eis = 0.25;
b_eis = 1;

@#define N=2
@#for j in 1:N
var k_@{j} a_@{j};
varexo e_@{j};
parameters gamma_@{j} t_@{j};
gamma_@{j} = a_eis + (@{j} - 1)*(b_eis - a_eis)/(@{N}-1);
t_@{j} = A^(1/gamma_@{j});

@#endfor

model;
@#for j in 1:N
lambda*(1 + phi*(k_@{j}/k_@{j}(-1) - 1))
= beta*lambda(+1)*(exp(a_@{j}(+1))*kappa*A*k_@{j}^(kappa - 1)
+ 1 - delta + (phi/2)*(k_@{j}(+1)/k_@{j} - 1)*(k_@{j}(+1)/k_@{j} + 1));

[preamble]
a_@{j} = rho*a_@{j}(-1) + sigE*(e + e_@{j});

@#endfor
exp(a_1)*A*k_1(-1)^kappa

@#for j in 2:N
+ exp(a_@{j})*A*k_@{j}(-1)^kappa

@#endfor
=
(lambda/t_1)^(-gamma_1) + k_1 - (1 - delta)*k_1(-1) + (phi/2)*k_1(-1)*(k_1/k_1(-1) - 1)^2
@#for j in 2:N
+ (lambda/t_@{j})^(-gamma_@{j}) + k_@{j} - (1 - delta)*k_@{j}(-1)

+ (phi/2)*k_@{j}(-1)*(k_@{j}/k_@{j}(-1) - 1)^2
@#endfor
;

end;

initval;
@#for j in 1:N

k_@{j} = 1;
a_@{j} = 0;

@#endfor
lambda = 1;

end;

steady;

shocks;
var e; stderr 1;
@#for j in 1:N
var e_@{j}; stderr 1;

@#endfor
end;

@#for j in 1:N
limits!("k_@{j}", min = 0.8, max = 1.2);
limits!("a_@{j}", min = -0.8*sigE/(1 - rho), max = 0.8*sigE/(1 - rho));

@#endfor

(SG_grid, sgws) = sparsegridapproximation(gridDepth=3,maxRef=0);
(DDSG_grid, ddsgws) = DDSGapproximation(gridDepth=3,maxRef=0,k_max=1);
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# Dimensions SG Level # of Points Avg. Error Max. error (99.9%)
4 3 137 -3.62 -2.61
4 5 1105 -4.21 -3.10
4 7 7,537 -4.64 -3.31

Table 1: Average (Avg.) and maximum (Max.) Euler equation residuals (i.e., errors) for the 4-
dimensional IRBC model across increasing SG refinement levels (SG Level), with corresponding
grid point counts. All errors are reported in log10 scale.

6 Results

We now evaluate the performance of SGs and DDSG within Dynare for computing global
solutions to our benchmark IRBC model. Section 6.1 reports SG results, while Section 6.2
examines the DDSG performance.18 These experiments illustrate that global solutions of high-
dimensional stochastic models can be computed both accurately and swiftly in Dynare without
any need to resort to high-performance computing and with only minimal modifications,
thereby broadening the scope of applications available to the Dynare community. This section
demonstrates that i) SG and DDSG operate reliably within Dynare, and ii) leveraging Dynare’s
perturbation solution as an initial guess for the time iteration algorithm significantly reduced
the time to solution. For clarity of exhibition, we disable SG adaptivity throughout this section
and employ a fixed SG with a specified refinement level. Discussions on adaptivity and
model-specific hyperparameter tuning for SGs and DDSG are beyond the scope of this paper
and are addressed in Brumm and Scheidegger (2017) and Eftekhari and Scheidegger (2022),
respectively.

6.1 Solving the IRBC model with SGs and Dynare

To systematically evaluate how accuracy varies with grid refinement ℓ and problem dimen-
sionality, we examine SG solutions for the IRBC model, following the performance metrics
discussed in Juillard and Villemot (2011) and Brumm and Scheidegger (2017). The time itera-
tion algorithm (Algorithm 1), initialized with Dynare’s first-order perturbation solution, was
executed until either an accuracy of tol = 1 · 10−7 was reached on the SG points or the error
ceased to decrease, a condition known as “early stopping” in the machine learning literature.
Table 1 presents Euler equation residuals for the four-dimensional (2-country) IRBC model,
computed over a 10, 000-step simulated trajectory (discarding 1, 000 burn-in steps) from the
stochastic steady state. As expected, both the maximum and average errors decrease consis-
tently with higher SG refinement levels, remaining reasonably low even with modest grid point
counts. We next increase the problem dimensionality from 𝑑 = 4 to 𝑑 = 16 while holding the
grid level constant. Table 2 indicates that performance remains relatively consistent despite
significant dimensional growth. Furthermore, the quality of the results reported here is at least
on par with that achieved by other global solution methods (e.g., Juillard and Villemot, 2011,
and references therein). Table 2 shows that global solutions for 4 and 8-dimensional models
require only seconds to few minutes, whereas 16-dimensional cases demand about half an
hour (cf. Table 3).19 Although the increase in runtime is notable, it exhibits subexponential

18All tests presented in this section used a standard laptop with an Intel Core i9-12900H (14 cores, 20 threads, 2.5
GHz) and 64 GB of memory.

19Although a detailed discussion is beyond the scope of this paper, one could accelerate the time iteration
algorithm by initially employing coarse SGs and progressively refining them to finer levels. For instance, Brumm
et al. (2017) show that SGs can reduce computation time by an order of magnitude by using a level-2 grid for 200
iterations, followed by 80 iterations on a level-3 grid or higher.
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# Dimensions SG Level # of Points Avg. Error Max. error (99.9%) Time (s/step)
4 3 137 -3.62 -2.61 0.13
8 3 849 -3.78 -2.71 2.09
16 3 6,049 -4.05 -2.94 267.35

Table 2: Average (Avg.) and maximum (Max.) solution errors for 4- to 16-dimensional IRBC
models, alongside the corresponding grid point counts for SGs at a fixed refinement level 3,
reported on a log10 scale, with indicative average runtimes in seconds per time iteration step
(s/step).

growth and can, if needed, further be reduced by orders of magnitude through the use of
high-performance computing resources (Scheidegger et al., 2018).

Next, we demonstrate that a well-informed initial guess for the time iteration algorithm (Al-
gorithm 1) significantly accelerates convergence (i.e., drastically reduces the time to solution).
Table 3 shows that initializing the computations with Dynare’s linear solution reduces iteration
steps by factors of approximately 5 (37 vs. 188 steps) in the 4-dimensional model and nearly 20
times (5 vs. 94 steps) in the 16-dimensional IRBC, compared to a naive, constant initial guess
(ℐ 𝑝guess = 1 for all individual policies). Moreover, a good initial guess becomes increasingly
important with rising dimensionality.

# Dimensions SG Level # of Points # TI steps Dyn. Guess # TI Steps Naive Guess
4 3 137 37 188
8 3 849 11 168
16 3 6,049 5 94

Table 3: The table reports the number of iteration steps required by Algorithm 1 to achieve the
target tolerance (tol), as evaluated on SG points at refinement level 3, for models of increasing
dimensionality. The columns labeled “# TI Steps Dyn. Guess” and “# TI Steps Naive Guess”
indicate the number of steps for models initialized with the linear Dynare solution and with a
naive, constant initial guess, respectively.

A severe drawback of SGs of all types, including Smolyak’s method (Krueger and Kubler,
2004), is that the number of grid points grows very fast with the level of the approximation,
as was shown in Figure 2. It is, therefore, often not practical to increase accuracy by simply
going to the next level. For instance, in 50 dimensions, a refinement level-3 SG comprises
approximately 5,000 points, whereas a level-4 grid contains roughly 170,000 points, resulting in
a substantial increase in computational burden. Adaptive sparse grids can resolve this problem
to some extent, as intermediate grid sizes can be reached by choosing the refinement threshold
and maximum refinement level appropriately (cf. Brumm and Scheidegger (2017)). However,
for very high-dimensional problems (say, 𝑑 > 20), even they can fail. We, therefore, explore
DDSG in Section 6.2, which addresses this limitation by exploiting latent, additively separable
structures in the model.

6.2 Solving the IRBC model with DDSG and Dynare

Having assessed the accuracy of our global solutions to the IRBC model and its scaling with SG
resolution, we now systematically investigate how the performance of the DDSG method scales
with increasing problem dimensionality. In accordance with our findings in Section 6.1 (see
Table 2), we fix the SG refinement level of each DDSG component function to 3, since a level 3
SG previously yielded accurate results. Given the relative simplicity of the IRBC model under
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# Dimensions # of Points Avg. Error Max. error (99.9%) Time (s/step)
4 36 -3.74 -2.56 0.19
8 72 -3.91 -2.67 1.62
16 144 -3.97 -2.88 19.20
50 450 -3.91 -2.48 1849.41
100 900 -3.97 -2.45 7165.30

Table 4: Average (Avg.) and maximum (Max.) errors for IRBC models of dimensions 4 to 100,
alongside grid point counts for DDSG expansions with order 𝒦 = 1, and the SG component
functions fixed at a refinement level 3. Errors and counts are reported on a log10 scale, with
indicative average runtimes per time step in seconds (s/step).

consideration, we conjecture that an additively separable structure is present and, accordingly,
truncate the DDSG expansion at 𝒦 = 1.

Table 4 reports the Euler equation residuals for the IRBC model across dimensions ranging
from four (2-country) to one hundred (50-country). These residuals are computed over a
simulated trajectory of 10, 000 steps, with the first 1, 000 steps discarded as burn-in, starting
from the stochastic steady state. Both the average and maximum errors remain consistently
low across all dimensions, indicating robust performance. As discussed above, the quality
of the results reported here is at least comparable to that achieved by other global solution
methods for similar IRBC models, while operating on much larger state spaces (e.g., Juillard
and Villemot, 2011 and references therein).

Furthermore, this table indicates that runtimes increase more gradually than in the pure
SG case (see Table 2), confirming that evaluating 𝑁 one-dimensional component functions is
far more efficient for large 𝑁 than constructing an 𝑁-dimensional SG when a latent additively
separable structure exists. For the four-dimensional model, the DDSG solution requires ap-
proximately forty percent more time per timestep due to the additional overhead required
to carry around multiple grid structures in the computer memory. However, this overhead
diminishes in the eight-dimensional case, where runtimes are roughly equivalent (i.e., slightly
favoring DDSG). In the sixteen-dimensional case, a single DDSG timestep is over thirteen times
faster. This advantage will become increasingly pronounced for higher dimensions, implying
that DDSG keeps models tractable in scenarios where SG methods become infeasible.20

Next, we show that employing a well-informed initial guess for the time iteration algorithm
(Algorithm 1) significantly accelerates convergence within the DDSG framework relative to
a naive, constant initial guess (i.e., ℐ 𝑝guess = 1 for all individual policies), consistent with
previous findings. To ensure comparability between the SG and DDSG methods, we examine
the four-, eight-, and sixteen-dimensional cases. Table 5 reveals that initializing computations

# Dimensions # of Points # TI steps Dyn. Guess # TI Steps Naive Guess
4 36 7 209
8 72 3 186
16 144 2 167

Table 5: Number of iteration steps required by Algorithm 1 to reach the target tolerance (tol),
evaluated at DDSG points with𝒦 = 1, and SG refinement level 3, for IRBC models of increasing
dimensionality. The columns “# TI Steps Dyn. Guess” and “# TI Steps Naive Guess” report the
steps for models initialized with Dynare’s linear solution and a naive zero guess, respectively.

with Dynare’s linear solution reduces the number of iterations by factors of approximately 5 (7
20Note that these figures are conservative, as our code remains unoptimized.
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vs. 209 steps) in the four-dimensional model and 80 (2 vs. 167 steps) in the sixteen-dimensional
IRBC, relative to a naive, constant initial guess. Moreover, the importance of an effective initial
guess grows with increasing dimensionality. As observed in the SG case, the initial guess
becomes more impactful in higher dimensions; however, in the DDSG framework, Dynare’s
solution proves even more effective than in the SG case (see Table 3).

7 Conclusion & Outlook

This study enhances Dynare (Dynare.jl) by integrating sparse grids and high-dimensional
model representation into its native .mod files with minimal syntactic changes, enabling global
solutions for high-dimensional, non-linear dynamic stochastic models. We implement these
techniques in a generic manner, thereby substantially broadening the range of models that
Dynare can tackle, and subsequently validate them using an international real business cycle
model. Our numerical experiments demonstrate their scalability, handling up to at least 100
dimensions on standard laptops within minutes to hours. Our methods mitigate the curse of
dimensionality, reduce the time to solution by leveraging Dynare’s perturbation-based initial
guesses (yielding speedups of up to 80 times), and maintain consistent accuracy as model
dimensionality increases.

We conclude that these methodological additions significantly enhance Dynare’s versatility,
reinforcing its role as a pivotal tool for macroeconomic analysis. Looking forward, further
advancements could be achieved by incorporating recent algorithms, such as those developed
in the machine learning literature, thereby expanding Dynare’s capacity to address increasingly
intricate economic questions and preserving its continued relevance in the field.
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